Integrate (z^2 - 4)/(z^2 + 4) Around |z - i|=2: -4π

  • Thread starter Thread starter geft
  • Start date Start date
  • Tags Tags
    Integration
geft
Messages
144
Reaction score
0

Homework Statement



Integrate (z^2 - 4)/(z^2 + 4) counterclockwise around the circle |z - i| = 2.

Homework Equations



Cauchy's integral formula

The Attempt at a Solution



|z - i| = 2
|z - 2| = i

z0 = 2

(z^2 - 4)/(z^2 + 4)
= ((z + 2)(z - 2))/(z^2 + 4)
= (z + 2)/(z^2 + 4) * i

f(z) = (z + 2)/(z^2 + 4)

2i*pi*f(z0) = 2i*pi*(1/2) = i*pi

The answer is -4*pi. Please tell me what I'm doing wrong.
 
Physics news on Phys.org
I can give you a very good piece of advice: you're got to make that look nicer so that it's easier to "see":

\mathop\oint\limits_{|z-i|=2} \frac{z^2-4}{z^2+4}dz=\mathop\oint\limits_{|z-i|=2} \frac{z^2-4}{(z+2i)(z-2i)}dz=\mathop\oint\limits_{|z-i|=2} \frac{z^2-4}{z+2i}\frac{1}{z-2i}dz

Now we in the big house. Can you now just apply Cauchy's Integral formula with:

f(z)=\frac{z^2-4}{z+2i}
 
But isn't the factor z - i? How can you factor z - 2i?

Also, 2*pi*i*f(i) = 2*pi*i*(-5/3i) = -10*pi/3
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top