Integrating 1/(2x^2 + 3x + 1)[(3x^2 - 2x + 1)^(1/2)]

  • Thread starter Thread starter Anony111
  • Start date Start date
  • Tags Tags
    Integrating
Anony111
Messages
4
Reaction score
0

Homework Statement



integrate

Homework Equations




1/(2x^2 + 3x + 1)[(3x^2 - 2x + 1)^(1/2)]

The Attempt at a Solution

 
Physics news on Phys.org


It doesn't work
 


Anony111 said:
It doesn't work

Why not? Show what you have tried, and then we can help you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top