Integrating f(x) = sinx and Finding A(w) Using Product-to-Sum Formula

  • Thread starter Thread starter kasse
  • Start date Start date
  • Tags Tags
    Fourier Integral
kasse
Messages
383
Reaction score
1

Homework Statement



Represent

f(x)
= sinx if 0 < x < pi
= 0 if x > pi

as an integral

The Attempt at a Solution



I first try to find A(w) = \int(1/pi)sinv cos wv dv between 0 and pi. How on Earth do I solve that integral?

I've tried to use the product-to-sum formula, but the values of the integral depends on the value of w.
 
Last edited:
Physics news on Phys.org
There is an overlap is the definition of your function.
 
Corrected
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top