yungman
- 5,741
- 294
I don't get this answer, this is my work:
Find \int^a_0 \frac {dz}{\sqrt{ s^2+z^2 }}
Let tan \;\theta = \frac z s \;\Rightarrow dz = s \;sec^2\;\theta \;d \theta, \; sec \;\theta = \frac {\sqrt{s^2 + z^2}} s
\int^a_0 \frac {dz}{\sqrt{ s^2+z^2 }} = \int^a_0 sec \;\theta \;d\theta = ln| sec \;\theta + tan \;\theta| = ln \left | \frac {\sqrt{s^2+z^2} + z}{s} \right |^a_0
But from the book:
\int^a_0 \frac {dz}{\sqrt{ s^2+z^2 }} = ln | \sqrt{s^2+z^2} + z |^a_0
Can anyone help?
Thanks
Find \int^a_0 \frac {dz}{\sqrt{ s^2+z^2 }}
Let tan \;\theta = \frac z s \;\Rightarrow dz = s \;sec^2\;\theta \;d \theta, \; sec \;\theta = \frac {\sqrt{s^2 + z^2}} s
\int^a_0 \frac {dz}{\sqrt{ s^2+z^2 }} = \int^a_0 sec \;\theta \;d\theta = ln| sec \;\theta + tan \;\theta| = ln \left | \frac {\sqrt{s^2+z^2} + z}{s} \right |^a_0
But from the book:
\int^a_0 \frac {dz}{\sqrt{ s^2+z^2 }} = ln | \sqrt{s^2+z^2} + z |^a_0
Can anyone help?
Thanks
Last edited: