Mosaness
- 92
- 0
1. ∫\frac{dx}{x<sup>3</sup> + 2x}
We're suppose to evaluate the integral.
Use Partial Fraction Decomposition:
\frac{1}{x<sup>3</sup> + 2x} = \frac{A}{x} + \frac{Bx + C}{x<sup>2</sup> + 2}
1 = A(x2 + 2) + (Bx + C)(x)
1 = Ax2 + 2A + Bx2 + Cx
1 = x2( A + B) + Cx + 2A
Solving for A gives \frac{1}{2}
Solving for B gives -\frac{1}{2}
Solving for C gives 0
∫\frac{dx}{x(x<sup>2</sup> + 2} = \frac{1}{2}∫\frac{dx}{x} - \frac{1}{2}∫\frac{dx}{x<sup>2</sup> + 2}
When we evaluate this, I get:
\frac{1}{2}ln x - \frac{1}{2}tan-1\frac{x}{\sqrt{2}}
Or should it be:
\frac{1}{2}ln x - \frac{1}{2}ln (x2 + 2)
We're suppose to evaluate the integral.
Use Partial Fraction Decomposition:
\frac{1}{x<sup>3</sup> + 2x} = \frac{A}{x} + \frac{Bx + C}{x<sup>2</sup> + 2}
1 = A(x2 + 2) + (Bx + C)(x)
1 = Ax2 + 2A + Bx2 + Cx
1 = x2( A + B) + Cx + 2A
Solving for A gives \frac{1}{2}
Solving for B gives -\frac{1}{2}
Solving for C gives 0
∫\frac{dx}{x(x<sup>2</sup> + 2} = \frac{1}{2}∫\frac{dx}{x} - \frac{1}{2}∫\frac{dx}{x<sup>2</sup> + 2}
When we evaluate this, I get:
\frac{1}{2}ln x - \frac{1}{2}tan-1\frac{x}{\sqrt{2}}
Or should it be:
\frac{1}{2}ln x - \frac{1}{2}ln (x2 + 2)