By a sequence of clever tricks:
1. Let us consider the integral
I=\int_{-\infty}^{\infty}e^{-x^{2}}dx
Now, since a dummy variable's name is irrelevant, we may write:
I^{2}=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)^{2}=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)(\int_{-\infty}^{\infty}e^{-x^{2}}dx)=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)(\int_{-\infty}^{\infty}e^{-y^{2}}dy)
2. By Fubini's theorem, we have:
\int_{-\infty}^{\infty}e^{-x^{2}}dx\int_{-\infty}^{\infty}e^{-y^{2}}dy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^{2}}e^{-y^{2}}dxdy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^{2}+y^{2})}dxdy
3. Switching to polar coordinates, x=r\cos\theta,y=r\sin\theta,0\leq{r}\leq\infty,0\leq\theta\leq{2\pi}, we get:
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^{2}+y^{2})}dxdy=\int_{0}^{\infty}\int_{0}^{2\pi}re^{-r^{2}}d\theta{d}r
which is easily integrated to the value \pi[/tex]<br />
<br />
4. Hence, we have I^{2}=\pi\to{I}=\sqrt{\pi}