Integrating the Normal Distribution: Uncovering Gauss' Method

  • Thread starter Thread starter alba_ei
  • Start date Start date
  • Tags Tags
    Integral
alba_ei
Messages
38
Reaction score
1
how did gauss integrate this function
to obtain the values of the normal distribution?:confused:
 

Attachments

  • 76f2a2c45e5619aef2717d523ff7f037.png
    76f2a2c45e5619aef2717d523ff7f037.png
    1 KB · Views: 473
Physics news on Phys.org
By a sequence of clever tricks:

1. Let us consider the integral
I=\int_{-\infty}^{\infty}e^{-x^{2}}dx
Now, since a dummy variable's name is irrelevant, we may write:
I^{2}=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)^{2}=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)(\int_{-\infty}^{\infty}e^{-x^{2}}dx)=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)(\int_{-\infty}^{\infty}e^{-y^{2}}dy)
2. By Fubini's theorem, we have:
\int_{-\infty}^{\infty}e^{-x^{2}}dx\int_{-\infty}^{\infty}e^{-y^{2}}dy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^{2}}e^{-y^{2}}dxdy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^{2}+y^{2})}dxdy
3. Switching to polar coordinates, x=r\cos\theta,y=r\sin\theta,0\leq{r}\leq\infty,0\leq\theta\leq{2\pi}, we get:
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^{2}+y^{2})}dxdy=\int_{0}^{\infty}\int_{0}^{2\pi}re^{-r^{2}}d\theta{d}r
which is easily integrated to the value \pi[/tex]<br /> <br /> 4. Hence, we have I^{2}=\pi\to{I}=\sqrt{\pi}
 
Last edited:
But since the question was
alba_ei said:
how did gauss integrate this function
to obtain the values of the normal distribution?:confused:
The answer is "numerically". In general it is impossible to find a closed form (elementary) anti-derivative but one certainly can do a numerical integration- that's how the values in a "Gaussian distribution" table are calculated.
 
Blarrgh, you read it weller than me!
I LIKE those tricks..:frown: :cry:
 
arildno said:
By a sequence of clever tricks:

1. Let us consider the integral
I=\int_{-\infty}^{\infty}e^{-x^{2}}dx
Now, since a dummy variable's name is irrelevant, we may write:
I^{2}=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)^{2}=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)(\int_{-\infty}^{\infty}e^{-x^{2}}dx)=(\int_{-\infty}^{\infty}e^{-x^{2}}dx)(\int_{-\infty}^{\infty}e^{-y^{2}}dy)
2. By Fubini's theorem, we have:
\int_{-\infty}^{\infty}e^{-x^{2}}dx\int_{-\infty}^{\infty}e^{-y^{2}}dy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^{2}}e^{-y^{2}}dxdy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^{2}+y^{2})}dxdy
3. Switching to polar coordinates, x=r\cos\theta,y=r\sin\theta,0\leq{r}\leq\infty,0\leq\theta\leq{2\pi}, we get:
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^{2}+y^{2})}dxdy=\int_{0}^{\infty}\int_{0}^{2\pi}re^{-r^{2}}d\theta{d}r
which is easily integrated to the value \pi[/tex]<br /> <br /> 4. Hence, we have I^{2}=\pi\to{I}=\sqrt{\pi}
<img src="https://cdn.jsdelivr.net/joypixels/assets/8.0/png/unicode/64/1f60e.png" class="smilie smilie--emoji" loading="lazy" width="64" height="64" alt=":cool:" title="Cool :cool:" data-smilie="6"data-shortname=":cool:" /> <br /> arildno,you are a mean green integration machine <img src="https://www.physicsforums.com/styles/physicsforums/xenforo/smilies/oldschool/approve.gif" class="smilie" loading="lazy" alt=":approve:" title="Approve :approve:" data-shortname=":approve:" />
 
Last edited:
But what's happened if I want to know the integral from 0 to x. specifically from 0 to 2
 
then you should read HallsofIvy's post once more.
 
You could look it up in a table of the "Error function", Erf(x). That is the "anti-derivative" of e^{-x^2/2} and is derived, just as I said, by numerical integration.
 
  • #10
If you encounter a table of values for the Error function, don't quickly take that as your value for the integral.

Erf(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} dt
 
  • #11
Right. You will need to use the given values of \mu and \sigma to convert to the "standard z" variable.
 
Back
Top