teneleven
- 12
- 0
Homework Statement
\int\frac{x^3}{\sqrt{x^2 + 9}}
Homework Equations
x = 3\tan{\theta}
dx=3\sec^2{\theta}
The Attempt at a Solution
27\int\tan^3{\theta}\sec{\theta}
27\int\tan{\theta}(\sec^2{\theta} - 1)\sec{\theta}
27\int(sec^3{\theta} - \sec{\theta})\tan{\theta}
27[\int\sec^3{\theta}\tan{\theta} - \int\sec{\theta}\tan{\theta}
27(\frac{1}{3}\sec^3{\theta} - \sec{\theta})
= 27[\frac{1}{3}(\frac{\sqrt{x^2 + 9}}{3})^3 - \frac{\sqrt{x^2 + 9}}{3}] + C
The correct answer is as follows:
\frac{1}{3}(x^2 - 18)\sqrt{x^2 + 9}Any ideas?
Last edited: