Integrating Trig Substitution: Simplifying the Solution

  • Thread starter Thread starter teneleven
  • Start date Start date
  • Tags Tags
    Trig
teneleven
Messages
12
Reaction score
0

Homework Statement



\int\frac{x^3}{\sqrt{x^2 + 9}}

Homework Equations



x = 3\tan{\theta}
dx=3\sec^2{\theta}

The Attempt at a Solution



27\int\tan^3{\theta}\sec{\theta}
27\int\tan{\theta}(\sec^2{\theta} - 1)\sec{\theta}
27\int(sec^3{\theta} - \sec{\theta})\tan{\theta}
27[\int\sec^3{\theta}\tan{\theta} - \int\sec{\theta}\tan{\theta}
27(\frac{1}{3}\sec^3{\theta} - \sec{\theta})
= 27[\frac{1}{3}(\frac{\sqrt{x^2 + 9}}{3})^3 - \frac{\sqrt{x^2 + 9}}{3}] + C

The correct answer is as follows:

\frac{1}{3}(x^2 - 18)\sqrt{x^2 + 9}Any ideas?
 
Last edited:
Physics news on Phys.org
Both are correct. You just haven't simplified your answer to the form given in the book.

Btw, Welcome to PF! :)
 
Thanks for the welcoming. Love the forums.

I'm trying to simplify it but end up with something different. Where does the -18 come from? I've done the following:

9(\frac{\sqrt{x^2 + 9}}{3})^3 - \frac{27\sqrt{x^2 + 9}}{3}
9[\frac{(x^2 + 9)\sqrt{x^2 + 9}}{27}] - 9\sqrt{x^2 + 9}
\frac{x^2 + 9\sqrt{x^2 + 9}}{3} - 9\sqrt{x^2 + 9}
\frac{[(x^2 + 9) - 9]\sqrt{x^2 + 9}}{3}
\frac{x^2\sqrt{x^2 + 9}}{3}

Thanks.
 
Last edited:
27\left[\frac{\sqrt{x^2+9}}{3}\frac{(x^2+9)}{27} - \frac{\sqrt{x^2+9}}{3}\right]<br />

= 27\left[\frac{\sqrt{x^2+9}}{3}\left(\frac{(x^2+9)}{27} - 1\right)\right]
 
Last edited:
The first bit of tex you typed, you didn't have a dx stuck on the end. Ill sound pedantic, but you really should not forget them.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top