Integrating vector-valued functions along curves

Click For Summary
SUMMARY

This discussion focuses on integrating vector-valued functions along curves, specifically within the context of a unit square. The parametrizations for the hypotenuse (C1), bottom (C2), and right (C3) sides are provided, along with the corresponding integrals. The importance of using the correct outward normal vector for each side of the triangle is emphasized, with examples showing how to compute these integrals accurately. The final result confirms that the integral around the boundary of the region equals zero, demonstrating the application of Green's Theorem.

PREREQUISITES
  • Understanding of vector calculus, specifically line integrals
  • Familiarity with parametrization of curves
  • Knowledge of outward normal vectors in vector analysis
  • Basic proficiency in applying Green's Theorem
NEXT STEPS
  • Study the application of Green's Theorem in more complex regions
  • Learn about the significance of parametrization in vector calculus
  • Explore the concept of normal vectors and their applications in surface integrals
  • Investigate the relationship between line integrals and conservative fields
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector calculus, particularly those focusing on line integrals and their applications in various fields.

Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
Let ##\mathbf{f}=(ay^2,bx^2)## and let ##D## be region given by ##0\leq x\leq 1,0\leq y\leq x##. Compute ##\int_{\partial D}\mathbf{f}\cdot \mathbf{d}r## and ##\int_{\partial D}\mathbf{f}\cdot\mathbf{N}ds##.
Relevant Equations
Arc-length differential: ##ds=|r'|dt##
Unit vector normal to ##r'(t)##: ##\mathbf{N}##
The following parametrizations assume a counter-clockwise orientation for the unit square; the bounds are ##0\leq t\leq 1##.

Hypotenuse ##(C_1)##
%%%
##r(t)=(1-t,1-t)##
##dr=(-1,-1)\,dt##
##f(r(t))=f(1-t,1-t)=(a(1-t)^2,b(1-t)^2)##
##f\cdot dr=-(a+b)(1-t^2)\,dt##
\begin{align}
\int_{C_1} f\cdot dr&=&\int_0^1 -(a+b)(1-t)^2\,dt\\
&=&(a+b)\int_0^1 (1-t)^2(-dt)\\
&=&(a+b)\int_0^1(1-t)^2d(1-t)\\
&=&\frac{1}{3}(a+b)(1-t)^3|0^1\\
&=&-\frac{1}{3}(a+b)
\end{align}

Bottom ##(C_2)##
%%%
##r(t)=(t,0)##
##dr=(1,0)\,dt##
##f(r(t))=f(t,0)=(0,bt^2)##
##f\cdot dr=0##
##\int_{C_2}f\cdot dr=0##

Right ##(C_3)##
%%%
##r(t)=(1,t)##
##dr=(0,1)\,dt##
##f(r(t))=f(1,t)=(at^2,b)##
##f\cdot dr=b##
##\int_{C_3}f\cdot dr=\int_0^1b\,dt=b##

##\int_{\partial D} f\cdot dr=\sum_{i=1}^3\int_{C_i}f\cdot dr=-\frac{1}{3}(a+b)+b=\frac{2}{3}b-\frac{1}{3}a##

I don't know how to get started on the second part because I cannot figure out which unit normal vector to use for each side of the right triangle. For example, do I use ##N=(-1,0)## for ##C_3## or do I use ##N=(1,0)##? Likewise, do I use ##N=\sqrt{\frac{1}{2}}(1,-1)## or ##N=\sqrt{\frac{1}{2}}(-1,1)## in the integral? This part confuses me. Should I use the outward-normal-first vector, in other words, the normal vector that points outward from the given side of the triangle? I remember this being mentioned in my vector analysis course, but I do not particularly recall its significance.
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
The convention is to use the outward normal.
 
  • Like
Likes   Reactions: Eclair_de_XII
Thank you. This is very useful to keep in mind.

Hypotenuse ##(C_1)##
%%%
##N=\sqrt{\frac{1}{2}}(-1,1)##
##f=(1-t)^2(a,b)##
##r'=-(1,1)##
##ds=|r'|\,dt=\sqrt{2}\,dt##

##f\cdot N=\sqrt{\frac{1}{2}}(1-t)^2(-a+b)\,dt##
\begin{align}
\int_{C_1} f\cdot N&=&\int_0^1 \sqrt{\frac{1}{2}}(b-a)(1-t)^2\sqrt{2}\,dt\\
&=&(a-b)\int_0^1(1-t)^2(-1\cdot dt)\\
&=&(a-b)\int_0^1(1-t)^2\,d(1-t)\\
&=&\frac{1}{3}(a-b)(1-t)^3|_0^1\\
&=&-\frac{1}{3}(a-b)
\end{align}

Bottom ##(C_2)##
%%%
##N=(0,-1)##
##ds=dt##
##f=(0,bt^2)##
##f\cdot N=-bt^2##
##\int_{C_2} f\cdot N\,ds=\int_0^1 -bt^2\,dt=-\frac{1}{3}bt^3|_0^1=-\frac{1}{3}b##

Right ##(C_3)##
%%%
##N=(1,0)##
##ds=dt##
##f=(at^2,b)##
##f\cdot N=at^2##
##\int_{C_3} f\cdot N\,ds=\int_0^1at^2=\frac{1}{3}a##

\begin{align}
\int_{\partial D} f\cdot N&=&\sum_{i=1}^3\int_{C_i} f\cdot N\,ds\\
&=&\left(-\frac{1}{3}a+\frac{1}{3}b\right)+\left(-\frac{1}{3}b\right)+\left(\frac{1}{3}a\right)\\
&=&0
\end{align}
 
  • Like
Likes   Reactions: Delta2
Why the hypotenuse ##(C_1)## has been parameterized as ##r(t)=(1-t,1-t)## and not as ##r(t)=(-t,-t)##?
EDIT: NVM I found out myself, the slope would have been the same and direction counterclockwise but ##f(r(t))## would be wrong... ##r(t)=(t,t)## won't do it either cause it is clock wise oriented...
 
Last edited:
I think it is possible to use the parametrization ##r(t)=(-t,-t)##, but you'd have to set the bounds to ##-1\leq t\leq 0##. But with the bounds, ##0\leq t\leq1##, the function parametrizes a line from the origin to the point ##(-1,-1)##.
 
  • Informative
Likes   Reactions: Delta2
Eclair_de_XII said:
But with the bounds, 0≤t≤1, the function parametrizes a line from the origin to the point (−1,−1).
Yes but now that I think of it it is ##f(t,t)=f(-t,-t)## because ##f(x,y)=(ay^2,bx^2)## so I think we can use ##r(t)=(-t,-t)## without changing the bounds.

EDIT: I did it with ##r(t)=(-t,-t)## and the result remains the same that is ##-\frac{1}{3}(a+b)##.
 

Similar threads

Replies
12
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K