Integrating vector-valued functions along curves

Click For Summary
The discussion focuses on integrating vector-valued functions along curves, specifically for a unit square with counter-clockwise orientation. The calculations for the hypotenuse, bottom, and right sides of the square yield integrals that contribute to the overall integral around the boundary. A key point of confusion involves determining the correct outward normal vectors for each side of the triangle, with the consensus being that the outward normal should be used. The final results of the integrals confirm that the parameterization of the hypotenuse can be adjusted without affecting the outcome, maintaining the same integral value. Understanding the significance of outward normals and proper parameterization is crucial for accurate integration in vector analysis.
Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
Let ##\mathbf{f}=(ay^2,bx^2)## and let ##D## be region given by ##0\leq x\leq 1,0\leq y\leq x##. Compute ##\int_{\partial D}\mathbf{f}\cdot \mathbf{d}r## and ##\int_{\partial D}\mathbf{f}\cdot\mathbf{N}ds##.
Relevant Equations
Arc-length differential: ##ds=|r'|dt##
Unit vector normal to ##r'(t)##: ##\mathbf{N}##
The following parametrizations assume a counter-clockwise orientation for the unit square; the bounds are ##0\leq t\leq 1##.

Hypotenuse ##(C_1)##
%%%
##r(t)=(1-t,1-t)##
##dr=(-1,-1)\,dt##
##f(r(t))=f(1-t,1-t)=(a(1-t)^2,b(1-t)^2)##
##f\cdot dr=-(a+b)(1-t^2)\,dt##
\begin{align}
\int_{C_1} f\cdot dr&=&\int_0^1 -(a+b)(1-t)^2\,dt\\
&=&(a+b)\int_0^1 (1-t)^2(-dt)\\
&=&(a+b)\int_0^1(1-t)^2d(1-t)\\
&=&\frac{1}{3}(a+b)(1-t)^3|0^1\\
&=&-\frac{1}{3}(a+b)
\end{align}

Bottom ##(C_2)##
%%%
##r(t)=(t,0)##
##dr=(1,0)\,dt##
##f(r(t))=f(t,0)=(0,bt^2)##
##f\cdot dr=0##
##\int_{C_2}f\cdot dr=0##

Right ##(C_3)##
%%%
##r(t)=(1,t)##
##dr=(0,1)\,dt##
##f(r(t))=f(1,t)=(at^2,b)##
##f\cdot dr=b##
##\int_{C_3}f\cdot dr=\int_0^1b\,dt=b##

##\int_{\partial D} f\cdot dr=\sum_{i=1}^3\int_{C_i}f\cdot dr=-\frac{1}{3}(a+b)+b=\frac{2}{3}b-\frac{1}{3}a##

I don't know how to get started on the second part because I cannot figure out which unit normal vector to use for each side of the right triangle. For example, do I use ##N=(-1,0)## for ##C_3## or do I use ##N=(1,0)##? Likewise, do I use ##N=\sqrt{\frac{1}{2}}(1,-1)## or ##N=\sqrt{\frac{1}{2}}(-1,1)## in the integral? This part confuses me. Should I use the outward-normal-first vector, in other words, the normal vector that points outward from the given side of the triangle? I remember this being mentioned in my vector analysis course, but I do not particularly recall its significance.
 
Last edited:
Physics news on Phys.org
The convention is to use the outward normal.
 
  • Like
Likes Eclair_de_XII
Thank you. This is very useful to keep in mind.

Hypotenuse ##(C_1)##
%%%
##N=\sqrt{\frac{1}{2}}(-1,1)##
##f=(1-t)^2(a,b)##
##r'=-(1,1)##
##ds=|r'|\,dt=\sqrt{2}\,dt##

##f\cdot N=\sqrt{\frac{1}{2}}(1-t)^2(-a+b)\,dt##
\begin{align}
\int_{C_1} f\cdot N&=&\int_0^1 \sqrt{\frac{1}{2}}(b-a)(1-t)^2\sqrt{2}\,dt\\
&=&(a-b)\int_0^1(1-t)^2(-1\cdot dt)\\
&=&(a-b)\int_0^1(1-t)^2\,d(1-t)\\
&=&\frac{1}{3}(a-b)(1-t)^3|_0^1\\
&=&-\frac{1}{3}(a-b)
\end{align}

Bottom ##(C_2)##
%%%
##N=(0,-1)##
##ds=dt##
##f=(0,bt^2)##
##f\cdot N=-bt^2##
##\int_{C_2} f\cdot N\,ds=\int_0^1 -bt^2\,dt=-\frac{1}{3}bt^3|_0^1=-\frac{1}{3}b##

Right ##(C_3)##
%%%
##N=(1,0)##
##ds=dt##
##f=(at^2,b)##
##f\cdot N=at^2##
##\int_{C_3} f\cdot N\,ds=\int_0^1at^2=\frac{1}{3}a##

\begin{align}
\int_{\partial D} f\cdot N&=&\sum_{i=1}^3\int_{C_i} f\cdot N\,ds\\
&=&\left(-\frac{1}{3}a+\frac{1}{3}b\right)+\left(-\frac{1}{3}b\right)+\left(\frac{1}{3}a\right)\\
&=&0
\end{align}
 
Why the hypotenuse ##(C_1)## has been parameterized as ##r(t)=(1-t,1-t)## and not as ##r(t)=(-t,-t)##?
EDIT: NVM I found out myself, the slope would have been the same and direction counterclockwise but ##f(r(t))## would be wrong... ##r(t)=(t,t)## won't do it either cause it is clock wise oriented...
 
Last edited:
I think it is possible to use the parametrization ##r(t)=(-t,-t)##, but you'd have to set the bounds to ##-1\leq t\leq 0##. But with the bounds, ##0\leq t\leq1##, the function parametrizes a line from the origin to the point ##(-1,-1)##.
 
Eclair_de_XII said:
But with the bounds, 0≤t≤1, the function parametrizes a line from the origin to the point (−1,−1).
Yes but now that I think of it it is ##f(t,t)=f(-t,-t)## because ##f(x,y)=(ay^2,bx^2)## so I think we can use ##r(t)=(-t,-t)## without changing the bounds.

EDIT: I did it with ##r(t)=(-t,-t)## and the result remains the same that is ##-\frac{1}{3}(a+b)##.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...