Integrating vector-valued functions along curves

Click For Summary

Homework Help Overview

The discussion revolves around integrating vector-valued functions along curves, specifically focusing on parametrizations of a unit square and the associated normal vectors for a right triangle. Participants are exploring the implications of different parametrizations and the correct use of outward normal vectors in their calculations.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the parametrization of the hypotenuse and question the choice of normal vectors for each side of the triangle. There is exploration of the implications of using different parametrizations and bounds on the results.

Discussion Status

Some participants have provided clarifications regarding the use of outward normal vectors, while others are considering alternative parametrizations and their effects on the calculations. The discussion is ongoing with various interpretations being explored.

Contextual Notes

There is mention of constraints related to the orientation of the curves and the significance of the outward normal in vector analysis. Participants are also reflecting on the effects of changing parametrizations on the results of their integrals.

Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
Let ##\mathbf{f}=(ay^2,bx^2)## and let ##D## be region given by ##0\leq x\leq 1,0\leq y\leq x##. Compute ##\int_{\partial D}\mathbf{f}\cdot \mathbf{d}r## and ##\int_{\partial D}\mathbf{f}\cdot\mathbf{N}ds##.
Relevant Equations
Arc-length differential: ##ds=|r'|dt##
Unit vector normal to ##r'(t)##: ##\mathbf{N}##
The following parametrizations assume a counter-clockwise orientation for the unit square; the bounds are ##0\leq t\leq 1##.

Hypotenuse ##(C_1)##
%%%
##r(t)=(1-t,1-t)##
##dr=(-1,-1)\,dt##
##f(r(t))=f(1-t,1-t)=(a(1-t)^2,b(1-t)^2)##
##f\cdot dr=-(a+b)(1-t^2)\,dt##
\begin{align}
\int_{C_1} f\cdot dr&=&\int_0^1 -(a+b)(1-t)^2\,dt\\
&=&(a+b)\int_0^1 (1-t)^2(-dt)\\
&=&(a+b)\int_0^1(1-t)^2d(1-t)\\
&=&\frac{1}{3}(a+b)(1-t)^3|0^1\\
&=&-\frac{1}{3}(a+b)
\end{align}

Bottom ##(C_2)##
%%%
##r(t)=(t,0)##
##dr=(1,0)\,dt##
##f(r(t))=f(t,0)=(0,bt^2)##
##f\cdot dr=0##
##\int_{C_2}f\cdot dr=0##

Right ##(C_3)##
%%%
##r(t)=(1,t)##
##dr=(0,1)\,dt##
##f(r(t))=f(1,t)=(at^2,b)##
##f\cdot dr=b##
##\int_{C_3}f\cdot dr=\int_0^1b\,dt=b##

##\int_{\partial D} f\cdot dr=\sum_{i=1}^3\int_{C_i}f\cdot dr=-\frac{1}{3}(a+b)+b=\frac{2}{3}b-\frac{1}{3}a##

I don't know how to get started on the second part because I cannot figure out which unit normal vector to use for each side of the right triangle. For example, do I use ##N=(-1,0)## for ##C_3## or do I use ##N=(1,0)##? Likewise, do I use ##N=\sqrt{\frac{1}{2}}(1,-1)## or ##N=\sqrt{\frac{1}{2}}(-1,1)## in the integral? This part confuses me. Should I use the outward-normal-first vector, in other words, the normal vector that points outward from the given side of the triangle? I remember this being mentioned in my vector analysis course, but I do not particularly recall its significance.
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
The convention is to use the outward normal.
 
  • Like
Likes   Reactions: Eclair_de_XII
Thank you. This is very useful to keep in mind.

Hypotenuse ##(C_1)##
%%%
##N=\sqrt{\frac{1}{2}}(-1,1)##
##f=(1-t)^2(a,b)##
##r'=-(1,1)##
##ds=|r'|\,dt=\sqrt{2}\,dt##

##f\cdot N=\sqrt{\frac{1}{2}}(1-t)^2(-a+b)\,dt##
\begin{align}
\int_{C_1} f\cdot N&=&\int_0^1 \sqrt{\frac{1}{2}}(b-a)(1-t)^2\sqrt{2}\,dt\\
&=&(a-b)\int_0^1(1-t)^2(-1\cdot dt)\\
&=&(a-b)\int_0^1(1-t)^2\,d(1-t)\\
&=&\frac{1}{3}(a-b)(1-t)^3|_0^1\\
&=&-\frac{1}{3}(a-b)
\end{align}

Bottom ##(C_2)##
%%%
##N=(0,-1)##
##ds=dt##
##f=(0,bt^2)##
##f\cdot N=-bt^2##
##\int_{C_2} f\cdot N\,ds=\int_0^1 -bt^2\,dt=-\frac{1}{3}bt^3|_0^1=-\frac{1}{3}b##

Right ##(C_3)##
%%%
##N=(1,0)##
##ds=dt##
##f=(at^2,b)##
##f\cdot N=at^2##
##\int_{C_3} f\cdot N\,ds=\int_0^1at^2=\frac{1}{3}a##

\begin{align}
\int_{\partial D} f\cdot N&=&\sum_{i=1}^3\int_{C_i} f\cdot N\,ds\\
&=&\left(-\frac{1}{3}a+\frac{1}{3}b\right)+\left(-\frac{1}{3}b\right)+\left(\frac{1}{3}a\right)\\
&=&0
\end{align}
 
  • Like
Likes   Reactions: Delta2
Why the hypotenuse ##(C_1)## has been parameterized as ##r(t)=(1-t,1-t)## and not as ##r(t)=(-t,-t)##?
EDIT: NVM I found out myself, the slope would have been the same and direction counterclockwise but ##f(r(t))## would be wrong... ##r(t)=(t,t)## won't do it either cause it is clock wise oriented...
 
Last edited:
I think it is possible to use the parametrization ##r(t)=(-t,-t)##, but you'd have to set the bounds to ##-1\leq t\leq 0##. But with the bounds, ##0\leq t\leq1##, the function parametrizes a line from the origin to the point ##(-1,-1)##.
 
  • Informative
Likes   Reactions: Delta2
Eclair_de_XII said:
But with the bounds, 0≤t≤1, the function parametrizes a line from the origin to the point (−1,−1).
Yes but now that I think of it it is ##f(t,t)=f(-t,-t)## because ##f(x,y)=(ay^2,bx^2)## so I think we can use ##r(t)=(-t,-t)## without changing the bounds.

EDIT: I did it with ##r(t)=(-t,-t)## and the result remains the same that is ##-\frac{1}{3}(a+b)##.
 

Similar threads

Replies
12
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K