Integrating velocity with respect to time when velocity depends on position

AI Thread Summary
A particle's transit time from point A to point B can be determined by integrating velocity, which is a function of position, V(x). To find the time, the relationship dt = dx/V(x) is used, allowing integration with respect to x. The discussion highlights the importance of transforming the velocity function into a form that can be integrated when time is not directly known. Additionally, there is a side conversation about the use of LaTeX for clarity in mathematical expressions and the importance of proofreading. Overall, the thread emphasizes the method of integrating position-dependent velocity to calculate time.
timsea81
Messages
89
Reaction score
1
Okay this seems like it should be simple but I'm stuck.

A particle moves from point A to point B in one dimension. The velocity of the particle changes with position according to some formula V = V(x). How long does it take for the particle to get from point A to point B?

If I could write V as a function of time, I could than integrate V=V(t) from 0 to t and that would give me the transit time. How do I do it if V depends on X?

Say, for example, V(X) = 1 + ax
 
Physics news on Phys.org
dx=vdt, so dt=dx/v, integrate to find time
 
Thanks. That does it, and I think I understand it now. I was thinking of it backwards before.

If I have v=v(t), I can integrate v from 0 to t to get the total distance traveled. I already know time in that case. If I don't have time I'd have to solve this for t, set it equal to t, and solve. In this case v = dx/dt --> dx = v dt, so integrating v dt gives you x.

If I have v=v(x) I solve so that dx is at the end of the expression: dt = (1/v) dx so I can integrate with respect to x, the variable that I know.
 
why can't you guys bother to use \LaTeX on this site that provides that resource?

it helps you articulate your question or answer. and it makes it easier for anyone to read either.
 
Why can't you bother capitalizing the first words of your sentences, or proofreading your post to realize that the word "either" was used wrong?

I don't know latex, that's why I didn't use it. Do you similarly not know the English language?

I guess I might say "thanks for the tip" had you not worded your response as a criticism.
 
  • Like
Likes Khal_eesi
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top