Integration along circular path

Benny
Messages
577
Reaction score
0
Hi, I'm having trouble with two integrals.

<br /> \int\limits_{\left| z \right| = 1}^{} {\frac{{e^z }}{{z^n }}dz} <br />

<br /> \int\limits_{\left| z \right| = 1}^{} {\frac{{\cosh z}}{{z^3 }}} dz<br />

For first one I wrote

\frac{{e^z }}{{z^n }} = \frac{{e^z }}{{\left( {z - 0} \right)z^n }} = \frac{{f\left( z \right)}}{{\left( {z - 0} \right)}}.

The main theorem which was covered in the relevant theory section was Cauchy's integral formula. By inspection f(z) is not even differentiable at z = 0 because it isn't continuous there? So can I even apply the integral formula?

Ignoring that, if n <=0 then f(z) = exp(z)z^(1-n) = 0 for z = 0. So the integral is zero for n <=0. But what about for n > 0? There's a factorial in the answer. I don't really know what to do because ofr n > 0 then f(z) = exp(z)/z^(positive power) so if I plug in z = 0 I get an undefined answer.
 
Last edited:
Physics news on Phys.org
HINT: Do a Taylor series expansion of the integrand about z = 0 and the integral will be the coefficient of the 1/z term (within a factor of 2\pi i[/tex]).
 
Ok I'll try that, thanks for the help. I made a slight error in my working for the first one. it should be (exp(z))/(z^n) = (exp(z))/((z-0)z^(n-1)) = f(z)/(z-0).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top