azatkgz
- 182
- 0
I'm not sure about answer.It looks very strange.
\int_{1}^{e}\frac{dx}{x\sqrt{1+ln^2x}}
for u=lnx-->u'=1/x
\int \frac{du}{\sqrt{1+u^2}}
substituting u=tan\theta
=\int \frac{d\theta}{cos\theta}=ln|sec\theta+tan\theta|
\int_{1}^{e}\frac{dx}{x\sqrt{1+ln^2x}}=ln|\sqrt{-1}|
Homework Statement
\int_{1}^{e}\frac{dx}{x\sqrt{1+ln^2x}}
The Attempt at a Solution
for u=lnx-->u'=1/x
\int \frac{du}{\sqrt{1+u^2}}
substituting u=tan\theta
=\int \frac{d\theta}{cos\theta}=ln|sec\theta+tan\theta|
\int_{1}^{e}\frac{dx}{x\sqrt{1+ln^2x}}=ln|\sqrt{-1}|
Last edited: