DryRun
Gold Member
- 837
- 4
Homework Statement
\int \frac{r^3-r^5}{\sqrt{1-r^2}}\,.dr
The attempt at a solution
The presence of \sqrt{1-r^2} suggests that i use the substitution r=sinθ
The integrand becomes: \frac{\sin^3\theta-\sin^5\theta}{\cos\theta}
\frac{dr}{d\theta}=\cos\theta
\int \frac{r^3-r^5}{\sqrt{1-r^2}}\,.dr=\int \sin^3\theta-\sin^5\theta\,.d\theta=\int\sin^3\theta\,.d\theta-\int\sin^5\theta\,.d\theta
Using the substitution u=cosθ
\int\sin^3\theta\,.d\theta=\frac{\cos^3\theta}{3}-\cos\theta
\int\sin^5\theta\,.d\theta=-\cos \theta+\frac{2\cos^3 \theta}{3}+\frac{\cos^5 \theta}{5}
\int\sin^3\theta\,.d\theta-\int\sin^5\theta\,.d\theta=-\frac{\cos^3 \theta}{3}-\frac{\cos^5 \theta}{5}
\int \frac{r^3-r^5}{\sqrt{1-r^2}}\,.dr
The attempt at a solution
The presence of \sqrt{1-r^2} suggests that i use the substitution r=sinθ
The integrand becomes: \frac{\sin^3\theta-\sin^5\theta}{\cos\theta}
\frac{dr}{d\theta}=\cos\theta
\int \frac{r^3-r^5}{\sqrt{1-r^2}}\,.dr=\int \sin^3\theta-\sin^5\theta\,.d\theta=\int\sin^3\theta\,.d\theta-\int\sin^5\theta\,.d\theta
Using the substitution u=cosθ
\int\sin^3\theta\,.d\theta=\frac{\cos^3\theta}{3}-\cos\theta
\int\sin^5\theta\,.d\theta=-\cos \theta+\frac{2\cos^3 \theta}{3}+\frac{\cos^5 \theta}{5}
\int\sin^3\theta\,.d\theta-\int\sin^5\theta\,.d\theta=-\frac{\cos^3 \theta}{3}-\frac{\cos^5 \theta}{5}
Last edited: