Integration Techniques for the Function sin(x + π/6)cosx

  • Thread starter Thread starter Nyasha
  • Start date Start date
  • Tags Tags
    Integration
Nyasha
Messages
127
Reaction score
0

Homework Statement



\int sin(x+\frac{\pi}{6})cosxdx



The Attempt at a Solution




u= sin(x+\frac{\pi}{6})

du=cosxdx

\frac{du}{cos x}=dx

\int udu=\frac{1}{2}sin(x+\frac{\pi}{6})+c

Guys how come my answer is different from the one at the back of the book. I'm l the one wrong or this time it is the book ?
 
Physics news on Phys.org
You are, this time. If u=sin(x+pi/6) then du=cos(x+pi/6)*dx. The simple substitution doesn't work. Try using sin(a+b)=sin(a)*cos(b)+cos(a)*sin(b) on sin(x+pi/6) before integrating.
 
sin(x+pi/6)cos(x)=(1/2)(sin(2x+pi/6)+sin(pi/6))
 
Dick said:
You are, this time. If u=sin(x+pi/6) then du=cos(x+pi/6)*dx. The simple substitution doesn't work. Try using sin(a+b)=sin(a)*cos(b)+cos(a)*sin(b) on sin(x+pi/6) before integrating.


\int (sinx cos\frac{\pi}{6}+sin\frac{\pi}{6} cos x)cosx

\int sinx cosx cos\frac{\pi}{6}+\int sin \frac {\pi}{6} cos^2x

\frac{1}{2}cos\frac{\pi}{6}\int sin(2x)+\frac{1}{2}sin\frac{\pi}{6}\int(1+cos2x)

Is this now correct ?
 
Last edited:
Nyasha said:
\int (sinx cos\frac{\pi}{6}+sin\frac{\pi}{6} cos x)cosx

\int sinx cosx cos\frac{\pi}{6}+\int sin \frac {\pi}{6} cos^2x

\frac{1}{2}cos\frac{\pi}{6}\int sin(2x)+\frac{1}{2}sin\frac{\pi}{6}\int(1+cos2x)

Is this now correct ?

Yes, that looks right.
 
Dick said:
Yes, that looks right.

Thanks a lot for the help
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top