Integration using Hyperbolic Trig substitution

Krash
Messages
5
Reaction score
0

Homework Statement



Evaluate:

\int\\{1}/{\sqrt{x^2-1}} dx between -3, -2

I know I'm supposed to use hyperbolic substitution in the question.

Homework Equations



edit: cosh^2(t) - sinh^2(t) = 1

The Attempt at a Solution



let x = -cosht, inside the integral let dx = sinh(t) dt

int ( sinht / sqrt(cosh^2t - 1) ) dt

now normally at this point i would use the trig identity cosh^2(t) + sinh^2(t) = 1 to eliminate the -1 in the root, however i can't work out how to sub into eliminate because I've had to use a negative cosht for x as the bounds of the integral are both negative.

I'm not great at this area of maths, I thought maybe if i substituted sinh(t) for x, I could possible rewrite -sinh(t) as sinh(-t) but I'm not sure if that's a fair solution or not.
 
Last edited:
Physics news on Phys.org
your identity is incorrect, it's supposed to be cosh2t-sinh2t=1
 
cheers.

that still means i can't sub cosht for x but i can use sinh = x

then everything cancels and I am left with int dt
which is -sinh^-1(x)

which gives me:

(1 / (-sinh(-3))) - (1 / (-sinh(-2))) = -0.175898995

still not sure if this is technically accurate
 
this is the current solution I am working on:

dx = cosht dt
x = -sinht

therefore;

1/ sqrt(x^2 - 1 ) = cosht dt / sqrt( -sinh^2 t - 1 ) ----- (1)
using the trig id:
cosh^2 t - sinh^2 t = 1
-sinh^2 t = -cosh^2 t + 1 ----- (2)

(2) into (1)

int (cosht / sqrt(-cosh^2 t)) dt = int dt
int dt = t + c
t = 1/(-sinh x)

therefore the integral evaluated is:
(1 / (-sinh(-3))) - (1 / (-sinh(-2))) = -0.175898995
 
Last edited:
so if you have \int dt =t +c

and x=cosh(t), doesn't it mean that t=cosh-1(x) ?
 
Sorry, x = -sinht, because the domain of the integral is negative.

i switched around the dx and x substitutions the second time around.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top