3.141592654
- 85
- 0
Homework Statement
\int\sqrt{X^2+1}dX
Homework Equations
The Attempt at a Solution
I used the substitution X=tan \theta
So, dX=(sec^2 \theta) d\theta
Substituting in for X, I get:
\int\sqrt{(tan^2 \theta)+1}(sec^2 \theta) d\theta
= \int\sqrt{(sec^2 \theta)}(sec^2 \theta) d\theta
= \int(sec \theta)(sec^2 \theta) d\theta
I then converted secants into cosines:
= \int\frac{1}{(cos \theta)(cos^2 \theta)} d\theta
= \int\frac{1}{(cos \theta)(1-sin^2 \theta)} d\theta
I then used U-sub:
u=sin \theta
du=cos \theta
\frac{du}{cos \theta}=d\theta
= \int\frac{du}{(cos^2 \theta)(1-u^2)}
= \int\frac{du}{(1-u^2)(1-u^2)}
= \int\frac{du}{(1-2u^2+u^4)}
= \int\frac{du}{(u^4-2u^2+1)}
= \int\frac{du}{u^2(u^2-2)+1}
I see this:
= \int\frac{du}{[u\sqrt{u^2-2}]^2+1}
I was hoping I could then use substitution and have the integral of arctan, but it looks much more complicated than I thought. Am I anywhere near the right track?