Cpt Qwark
- 45
- 1
Homework Statement
Evaluate \int{\frac{x^2}{(1-x^2)^\frac{5}{2}}}dx via trigonometric substitution.
You can do this via normal u-substitution but I'm unsure of how to evaluate via trigonometric substitution.
Homework Equations
The Attempt at a Solution
Letting x=sinθ,
\int{\frac{sin^{2}θ}{(1-sin^{2}θ)^\frac{5}{2}}}dθ=\int{\frac{sin^{2}θ}{(cos^{2}θ)^\frac{5}{2}}}dθ
but I'm not sure how the working in the answers gets up to \int{\frac{x^2}{(1-x^2)^\frac{5}{2}}}dx=\int{\frac{sin^{2}θ}{cos^{4}θ}}dθ.
Last edited: