gruba
- 203
- 1
Homework Statement
Find the integral \int \frac{2\sqrt[5]{2x-3}-1}{(2x-3)\sqrt[5]{2x-3}+\sqrt[5]{2x-3}}\mathrm dx
2. The attempt at a solution
\frac{2\sqrt[5]{2x-3}-1}{(2x-3)\sqrt[5]{2x-3}+\sqrt[5]{2x-3}}=\frac{2\sqrt[5]{2x-3}-1}{2\sqrt[5]{2x-3}(x-1)}=\frac{1}{x-1}-\frac{1}{2\sqrt[5]{2x-3}(x-1)}\int \frac{1}{x-1}\mathrm dx=\ln|x-1|+c
\int \frac{1}{2\sqrt[5]{2x-3}(x-1)}\mathrm dx=\frac{1}{2}\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx
Substitution u=2x-3,du=2dx gives
\frac{1}{2}\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=\int \frac{1}{u^{6/5}+u^{1/5}}\mathrm du
Substitution u^{1/5}=v,u=v^5,du=5v^4 gives
\int \frac{1}{u^{6/5}+u^{1/5}}\mathrm du=5\int \frac{v^3}{v^5+1}\mathrm dv
v^5+1=(v+1)(v^4-v^3+v^2-v+1)
Using partial fractions:
\frac{v^3}{v^5+1}=\frac{A}{v+1}+\frac{Bv^3+Cv^2+Dv+E}{v^4-v^3+v^2-v+1}
\Rightarrow A=-1/3,B=1/3,C=1,D=-2/3,E=1/3
\int \frac{A}{v+1}\mathrm dv=-\frac{1}{3}\ln|v+1|+c
How to integrate \frac{Bv^3+Cv^2+Dv+E}{v^4-v^3+v^2-v+1}?