Integration with power substitution

gruba
Messages
203
Reaction score
1

Homework Statement


Find the integral \int \frac{2\sqrt[5]{2x-3}-1}{(2x-3)\sqrt[5]{2x-3}+\sqrt[5]{2x-3}}\mathrm dx

2. The attempt at a solution
\frac{2\sqrt[5]{2x-3}-1}{(2x-3)\sqrt[5]{2x-3}+\sqrt[5]{2x-3}}=\frac{2\sqrt[5]{2x-3}-1}{2\sqrt[5]{2x-3}(x-1)}=\frac{1}{x-1}-\frac{1}{2\sqrt[5]{2x-3}(x-1)}\int \frac{1}{x-1}\mathrm dx=\ln|x-1|+c
\int \frac{1}{2\sqrt[5]{2x-3}(x-1)}\mathrm dx=\frac{1}{2}\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx

Substitution u=2x-3,du=2dx gives
\frac{1}{2}\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=\int \frac{1}{u^{6/5}+u^{1/5}}\mathrm du

Substitution u^{1/5}=v,u=v^5,du=5v^4 gives
\int \frac{1}{u^{6/5}+u^{1/5}}\mathrm du=5\int \frac{v^3}{v^5+1}\mathrm dv

v^5+1=(v+1)(v^4-v^3+v^2-v+1)

Using partial fractions:
\frac{v^3}{v^5+1}=\frac{A}{v+1}+\frac{Bv^3+Cv^2+Dv+E}{v^4-v^3+v^2-v+1}

\Rightarrow A=-1/3,B=1/3,C=1,D=-2/3,E=1/3

\int \frac{A}{v+1}\mathrm dv=-\frac{1}{3}\ln|v+1|+c

How to integrate \frac{Bv^3+Cv^2+Dv+E}{v^4-v^3+v^2-v+1}?
 
Physics news on Phys.org
There is an other half when you substitute ##2x-3=u## because ##dx=\frac{du}{2}##, but this not the principal problem ... other things seems correct, for your last integral you must factorize the polynomial ##v^4-v^{3}+v^{2}-v+1## that has four solution in ##\mathbb{C}## and proceed with the partial fractions in the complex case ...
 
  • Like
Likes gruba
Ssnow said:
There is an other half when you substitute ##2x-3=u## because ##dx=\frac{du}{2}##, but this not the principal problem ... other things seems correct, for your last integral you must factorize the polynomial ##v^4-v^{3}+v^{2}-v+1## that has four solution in ##\mathbb{C}## and proceed with the partial fractions in the complex case ...

I found the easier method to integrate \int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx.
\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=\int (x-1)^{-1}(-3+2x)^{-1/5}\mathrm dx
which is the integral of differential binomial.

After substitution u=x-1,du=dt,
\int u^{-1}(-1+2u)^{-1/5}\mathrm du

which can be solved by substitution -1+2u=v^5,du=\frac{5v^4}{2}dv
\Rightarrow \int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=10\int \frac{v^4}{v^5+1}\mathrm dv
 
gruba said:
I found the easier method to integrate \int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx.
\int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=\int (x-1)^{-1}(-3+2x)^{-1/5}\mathrm dx
which is the integral of differential binomial.

After substitution u=x-1,du=dt,
\int u^{-1}(-1+2u)^{-1/5}\mathrm du

which can be solved by substitution -1+2u=v^5,du=\frac{5v^4}{2}dv
\Rightarrow \int \frac{1}{\sqrt[5]{2x-3}(x-1)}\mathrm dx=10\int \frac{v^4}{v^5+1}\mathrm dv
Didn't you loose the ##v## from ##(-1+2u)^{-1/5}## in the denominator?
 
Samy_A said:
Didn't you loose the ##v## from ##(-1+2u)^{-1/5}## in the denominator?
You are right, it should be 10\int \frac{v^4}{(v^5+1)^2}\mathrm dv.
 
gruba said:
You are right, it should be 10\int \frac{v^4}{(v^5+1)^2}\mathrm dv.
No. What is ##(-1+2u)^{-1/5}## in terms of ##v##, if ##-1+2u=v^5##?
 
Samy_A said:
No. What is ##(-1+2u)^{-1/5}## in terms of ##v##, if ##-1+2u=v^5##?
(-1+2u)^{-1/5}=v^{-1}\Rightarrow 5\int \frac{v^3}{v^5+1}\mathrm dv
 
gruba said:
(-1+2u)^{-1/5}=v^{-1}\Rightarrow 5\int \frac{v^3}{v^5+1}\mathrm dv
You again lost a factor 2, as @Ssnow noticed.
I think the correct integral is ##10 \int \frac{v^3}{v^5+1}\mathrm dv##
 
  • Like
Likes gruba
Thanks for the help.
 
Back
Top