AuraCrystal
- 67
- 0
Homework Statement
Problem 7.15 from Aitchison and Hey, Volume I, 3rd Edition. Verify the forum (7.139) of the interaction Hamiltonian \mathcal{H_{S}^{'}}, in charged spin-0 electrodynamics.
Equation 7.139 is
\mathcal{H_{S}^{'}}= - \mathcal{L}_{int} - q^2 (A^0)^2 \phi^{\dagger} \phi
Homework Equations
The interaction Lagrangian:
\mathcal{L}_{int}= -iq(\phi^\dagger \partial^\mu \phi - (\partial^\mu \phi^\dagger)\phi) + q^2 A^\mu A_\mu \phi^\dagger \phi
The Attempt at a Solution
There are no time derivatives of A in the interaction Lagrangian, so
\mathcal{H_S^{'}} = \pi_{\phi}^{'} \dot{\phi}+\pi_{\phi^\dagger}^{'} \dot{\phi^\dagger}-\mathcal{L}_int
We have that
\pi_{\phi}^{'} = \frac { \partial \mathcal{L}_{int}}{ \partial \dot{\phi}}=-iq \phi^\dagger A_0
and similarly,
\pi_{\phi^{\dagger}}^{'} = \frac { \partial \mathcal{L}_{int}}{ \partial \dot{\phi^\dagger}}=iq \phi A_0
Thus
\mathcal{H_S^{'}}=- \mathcal{L} +iqA_0(\phi \dot{\phi^{\dagger}} - \phi^{\dagger} \dot{\phi}).
Which obviously does not match 7.139 above. This book uses a (+,-,-,-) sign convention for the metric.
Last edited: