Interpolation Functions and their derivatives

bugatti79
Messages
786
Reaction score
4
Folks,

How do determine whether the derivative of a quadratic interpolation function ##ax^2+bx+c## is continous/discontinous in the context of the following

We have a a true solution approximated by 2 quadratic interpolation functions ie,

The approximation function
<br /> f_1(x)=ax^2+bx+c, g \le x \le x_1\\ f_1(x)=dx^2+ex+f, x_1 \le x \le h<br /> <br />

See attached my sketch.

Would'nt ##f_1(x)=f_2(x)## and ##f'_1(x)=f'_2(x)## at ##x_1## for the approximation function to be continous?
 

Attachments

  • IMAG0063.jpg
    IMAG0063.jpg
    13.1 KB · Views: 409
Mathematics news on Phys.org
It looks like f and f' are continuous at x1.
 
Whether or not you want or need the first deriviative to be continuous depends what the interpolation is used for.

A common notation is "C0-continuous" if the function is continuous but the first derivative is not (except by accident in a special case), and "C1-continuous" if the function and its first derivative are both continuous.

The word "continuous" on its own means "C0-continuous".
 
AlephZero said:
Whether or not you want or need the first deriviative to be continuous depends what the interpolation is used for.
True but there would be little point in using a quadratic to interpolate if we don't want the first derivative to be continuous. The point is that for f(x)= ax^2+ bx+ c, f'(x)= 2ax+b, f''(x)= 2a, a constant. If we only want to match values and don't need "smoothness", we would use piecewise linear functions. If we want to match up second derivatives, we should use piecewise cubics (cubic splines).
 
AlephZero said:
Whether or not you want or need the first deriviative to be continuous depends what the interpolation is used for.

A common notation is "C0-continuous" if the function is continuous but the first derivative is not (except by accident in a special case), and "C1-continuous" if the function and its first derivative are both continuous.

The word "continuous" on its own means "C0-continuous".

Well I am referring back to the finite element theory. My query is based on the authors comment as attached.
Why wouldn't the derivative of a second order lagrange interpolation function be continuous as I have shown in my original sketch.

In other words, would'nt ##f'_1(x_1)=f'_2(x_1)## hold and thus the derivatuve is continuous...?

HallsofIvy said:
True but there would be little point in using a quadratic to interpolate if we don't want the first derivative to be continuous. The point is that for f(x)= ax^2+ bx+ c, f'(x)= 2ax+b, f''(x)= 2a, a constant. If we only want to match values and don't need "smoothness", we would use piecewise linear functions. If we want to match up second derivatives, we should use piecewise cubics (cubic splines).
 

Attachments

  • Derivative of Solution.jpg
    Derivative of Solution.jpg
    11.7 KB · Views: 488
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
6
Views
1K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
7
Views
1K
Replies
3
Views
2K
Replies
1
Views
2K
Back
Top