Interpretation of Complex numbers - confused

closet mathemetician
Messages
44
Reaction score
0
I know that generally complex numbers are represented in a two-dimensional plane with one real and one imaginary dimension. I also know that we have the quaternions, consisting of one real number and three imaginary numbers.

The imaginary axis is always perpendicular to the real axis. The problem is that in our world we have three mutually orthogonal real dimensions. So if the imaginary dimension has to be perpendicular to all three real dimensions, that would make the imaginary dimension a fourth dimension.

Now we have the problem that there are three different planes with a real dimension and an imaginary dimension so we have three complex planes. It seems to me that you would have a four-dimensional vector, with three real components and one imaginary component:

V=(x,y,z,it)

using "t" as the fourth dimensional real number by which to multiply the imaginary unit.


The "regular" inner product of V with itself would give the Minkowski metric

V^2=(x^2+y^2+z^2-t^2)


I have never seen the imaginary dimension presented this way. Why not? Can anyone explain?
 
Mathematics news on Phys.org
Quoting myself,

closet mathemetician said:
Now we have the problem that there are three different planes with a real dimension and an imaginary dimension so we have three complex planes.

Could this be the basis for quaternions, i.e., three complex planes? However, there is really only one imaginary dimension involved with all three planes.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top