Intro to Quantum Mechanics - Formalism normalisation

Graham87
Messages
72
Reaction score
16
Homework Statement
See pic
Relevant Equations
See pic
I can't figure out how they get i/sqrt(2) for normalisation of c1. Why is it a complex number? If I normalise c1 I just get 1/sqrt(2) because i disappears in the absolute value squared.

Thanks

1.png
 
Physics news on Phys.org
It looks like you left out other information from the problem, but apparently, there was the relation ##c_1 = i c_0##. That's where the ##i## comes from. Note that you had to have this relationship to solve for ##c_0##
otherwise you'd have two unknowns but only one equation.
 
  • Like
Likes topsquark and Graham87
vela said:
It looks like you left out other information from the problem, but apparently, there was the relation ##c_1 = i c_0##. That's where the ##i## comes from. Note that you had to have this relationship to solve for ##c_0##
otherwise you'd have two unknowns but only one equation.

There was this relation:

1.png


Aha, so the exponential is also interpreted as i then. Thanks, got it!
 
##e^{i\pi/2}= \cos (\pi/2) + i \sin(\pi/2) = i##
##e^{iv}= \cos (v) + i \sin(v) ##
 
  • Like
Likes SammyS, topsquark and Graham87
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...

Similar threads

Back
Top