What is the construction for taking inverse images of subschemes?

  • Thread starter Thread starter eof
  • Start date Start date
  • Tags Tags
    Images Inverse
eof
Messages
57
Reaction score
0
Hi,

As is the case with functions, we can always define the inverse image of a subset. In the case of schemes I was wondering if there is something that could be taken as the inverse image of a subscheme?

Example:

Let f:X->Y be a scheme morphism. Then if U is an open subscheme of Y, we have that f^{-1}U is an open subset of X. The structure sheaf O_U of U can be taken to be a O_Y-module provided that we extend it to the space Y by

V -> O_U(V \cap U)

so this way we could define f^*O_U. For this to make any sense, we would need to have f^*O_U(V)=O_X(V) for any open V\subset X.

Thus the definition doesn't really give us an inverse image of a scheme, because it would have to an open subscheme of X. So is there any way of providing the kind of construction I'm looking at? I don't see any smart way of doing this for closed subschemes either. Does anybody know if there's a construction to take inverse images of subschemes?
 
Physics news on Phys.org
As schemes build a category, we also have pre-images of scheme morphisms. So the key lies in the proof that schemes build a category. This means especially that the function ##f## and the corresponding ring homomorphism must be considered together. You cannot separate the two, as they build the morphisms.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top