cdotter
- 305
- 0
Homework Statement
Find the inverse Laplace transform of \frac{2s+1}{s^2-2s+2}
Homework Equations
The Attempt at a Solution
<br /> \begin{align*}<br /> L^{-1}\{ \frac{2s+1}{s^2-2s+2} \} &= 2 L^{-1}\{ \frac{s}{(s-1)^2+1} \} + L^{-1}\{ \frac{1}{(s-1)^2+1} \} \\ <br /> &= 2 L^{-1}\{ \frac{s}{(s-1)^2+1} \} + e^t sin(t) \\ <br /> &= L^{-1}\{ \frac{2s+1-1}{(s-1)^2+1} \} + e^t sin(t) \\ <br /> &= L^{-1}\{ \frac{2s-1}{(s-1)^2+1} \} + L^{-1}\{ \frac{1}{(s-1)^2+1} \} + e^t sin(t) \\ <br /> &= 2e^t cos(t) + e^t sin(t) + L^{-1}\{ \frac{1}{(s-1)^2+1} \} \\ <br /> &= 2e^t cos(t) + e^t sin(t) + e^t sin(t)<br /> \end{align*}<br />
My book has an answer of 2e^t cos(t) + 3e^t sin(t). Am I making a mistake in the algebra?
Last edited: