Gerenuk
- 1,027
- 5
I was trying to expand a three and more parameter functions similarly to the two-parameter case f(x,y)=(f(x,y)+f(y,x))/2+(f(x,y)-f(y,x))/2.
Anyway, to do the same for more parameters I need to solve
<br /> \begin{pmatrix}<br /> 1 & 1 & 1 & \dotsb & 1\\<br /> 1 & \omega & \omega^2 & \dotsb & \omega^{n-1}\\<br /> 1 & \omega^2 & \omega^4 & \dotsb & \omega^{2(n-1)}\\<br /> 1 & \omega^3 & \omega^6 & \dotsb & \omega^{3(n-1)}\\<br /> \vdots & &&& \vdots \\<br /> 1 & \omega^{n-1} & \omega^{2(n-1)} & \dotsb & \omega^{(n-1)(n-1)}<br /> \end{pmatrix}\mathbf{x}=<br /> \begin{pmatrix}<br /> 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0<br /> \end{pmatrix}<br />
with \omega=\exp(2\pi\mathrm{i}/n)
Is there a closed form expression for x?
EDIT: Oh, silly me. I realized it's a discrete Fourier transform. So is this the correct way to expand then? In the 3 parameter case the solution would be
<br /> f(x,y,z)=\frac13(f(x,y,z)+f(y,z,x)+f(z,x,y))+\frac13\left(f(x,y,z)+\omega f(y,z,x)+\omega^*f(z,x,y)\right)+\frac13\left(f(x,y,z)+\omega^*f(y,z,x)+\omega f(z,x,y)\right)
with \omega=\exp(2\pi\mathrm{i}/3)?
Now I'm just wondering why I get linear dependent terms when I consider the real part only?
Anyway, to do the same for more parameters I need to solve
<br /> \begin{pmatrix}<br /> 1 & 1 & 1 & \dotsb & 1\\<br /> 1 & \omega & \omega^2 & \dotsb & \omega^{n-1}\\<br /> 1 & \omega^2 & \omega^4 & \dotsb & \omega^{2(n-1)}\\<br /> 1 & \omega^3 & \omega^6 & \dotsb & \omega^{3(n-1)}\\<br /> \vdots & &&& \vdots \\<br /> 1 & \omega^{n-1} & \omega^{2(n-1)} & \dotsb & \omega^{(n-1)(n-1)}<br /> \end{pmatrix}\mathbf{x}=<br /> \begin{pmatrix}<br /> 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0<br /> \end{pmatrix}<br />
with \omega=\exp(2\pi\mathrm{i}/n)
Is there a closed form expression for x?
EDIT: Oh, silly me. I realized it's a discrete Fourier transform. So is this the correct way to expand then? In the 3 parameter case the solution would be
<br /> f(x,y,z)=\frac13(f(x,y,z)+f(y,z,x)+f(z,x,y))+\frac13\left(f(x,y,z)+\omega f(y,z,x)+\omega^*f(z,x,y)\right)+\frac13\left(f(x,y,z)+\omega^*f(y,z,x)+\omega f(z,x,y)\right)
with \omega=\exp(2\pi\mathrm{i}/3)?
Now I'm just wondering why I get linear dependent terms when I consider the real part only?
Last edited: