Is a Distribution Function a Ratio of Differentials?

flyusx
Messages
63
Reaction score
10
Homework Statement
Show that ##\vert\tilde{\phi}\vert^{2}=\frac{1}{\sqrt{\hbar}}\vert\phi\vert^{2}## where ##\tilde{\phi}## is a momentum-basis and ##\phi## is a k-space-basis wave packet.
Relevant Equations
##p=k\hbar##
I read on a post here titled 'Understanding Fourier Transform for Wavefunction Representation in K Space' that if one represents the squared-amplitude as a ratio of differentials, the solution is given. Letting the squared-amplitude be ##\phi##.
$$\frac{d\phi}{dp}=\frac{d\phi}{dk}\frac{dk}{dp}$$
Where $$\frac{dk}{dp}=\frac{1}{\hbar}$$
And therefore
$$\vert\tilde{\phi}\vert^{2}=\frac{1}{\hbar}\vert\phi\vert^{2}$$

Additionally, when I represent the Planck distribution with respect to frequency as ##\frac{du}{df}## and multiply by ##\left\vert\frac{df}{d\lambda}\right\vert##, I get the correct expression for the Planck distribution with respect to wavelength. Is this just distribution functions being represented as a ratio of derivatives?
 
Physics news on Phys.org
I would say, more simply, that the relation follows because ##p=\hbar k## and ##\int \vert\tilde{\phi}\vert^{2}dp## is a dimensionless probability and so is ##\int \vert\phi\vert^{2} dk##.
 
For OP: In statement of problem, why is it ##\sqrt(\hbar) ## and not just ##\hbar##????
 
My apologies. Yes, it is ##\hbar## that shouldn't be squared.
 
shouldn't be square-rooted.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top