Is a Distribution Function a Ratio of Differentials?

Click For Summary

Homework Help Overview

The discussion revolves around the representation of distribution functions in the context of physics, specifically relating to the Fourier Transform and the Planck distribution. Participants explore the mathematical relationships between differentials and their implications for probability distributions in quantum mechanics.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the representation of squared-amplitude as a ratio of differentials and its connection to the Planck distribution. Questions arise regarding the correct use of constants like ##\hbar## in the equations presented.

Discussion Status

The discussion is active, with participants questioning the original poster's notation and providing clarifications. There is an ongoing examination of the relationships between variables and their physical meanings, though no consensus has been reached on the implications of these representations.

Contextual Notes

Participants are navigating potential misunderstandings regarding the constants involved in the equations, particularly the use of ##\hbar## and its representation in the context of the problem. There is an emphasis on ensuring accurate mathematical representation in the discussion.

flyusx
Messages
64
Reaction score
10
Homework Statement
Show that ##\vert\tilde{\phi}\vert^{2}=\frac{1}{\sqrt{\hbar}}\vert\phi\vert^{2}## where ##\tilde{\phi}## is a momentum-basis and ##\phi## is a k-space-basis wave packet.
Relevant Equations
##p=k\hbar##
I read on a post here titled 'Understanding Fourier Transform for Wavefunction Representation in K Space' that if one represents the squared-amplitude as a ratio of differentials, the solution is given. Letting the squared-amplitude be ##\phi##.
$$\frac{d\phi}{dp}=\frac{d\phi}{dk}\frac{dk}{dp}$$
Where $$\frac{dk}{dp}=\frac{1}{\hbar}$$
And therefore
$$\vert\tilde{\phi}\vert^{2}=\frac{1}{\hbar}\vert\phi\vert^{2}$$

Additionally, when I represent the Planck distribution with respect to frequency as ##\frac{du}{df}## and multiply by ##\left\vert\frac{df}{d\lambda}\right\vert##, I get the correct expression for the Planck distribution with respect to wavelength. Is this just distribution functions being represented as a ratio of derivatives?
 
Physics news on Phys.org
I would say, more simply, that the relation follows because ##p=\hbar k## and ##\int \vert\tilde{\phi}\vert^{2}dp## is a dimensionless probability and so is ##\int \vert\phi\vert^{2} dk##.
 
For OP: In statement of problem, why is it ##\sqrt(\hbar) ## and not just ##\hbar##????
 
My apologies. Yes, it is ##\hbar## that shouldn't be squared.
 
shouldn't be square-rooted.
 
  • Like
Likes   Reactions: kuruman

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K