MHB Is \( A \) Isomorphic to \( \dfrac{R<X,Y>}{((X^2+1)X,(X^2+1)Y,YX)} \)?

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Isomorphism
Click For Summary
The discussion revolves around proving that the algebra \( A \) of upper triangular matrices is isomorphic to the quotient \( \dfrac{R<X,Y>}{((X^2+1)X,(X^2+1)Y,YX)} \). A proposed homomorphism \( f \) is defined, mapping \( X \) and \( Y \) to specific matrices, but there is confusion regarding the surjectivity of \( f \) and the nature of the entries in \( A \). Clarifications are made that \( a \) and \( b \) can be complex, while \( c \) must be real, and that \( R \) refers to the reals. The conclusion is reached that \( A \) is indeed isomorphic to the specified quotient, leveraging the properties of free algebras and the ideal generated by the elements in question.
Fermat1
Messages
180
Reaction score
0
let $x=\begin{bmatrix}i&0\\0&0 \end{bmatrix}$ and $y=\begin{bmatrix}0&1\\0&0 \end{bmatrix}$.

Define $A={{\begin{bmatrix}a&b\\0&c\\ \end{bmatrix}}where c\in\mathbb{R}}$

Show that A is isomorphic to $\dfrac{R<X,Y>}{((X^2+1)X),(X^2+1)Y,YX)}$

My work: Define $f:R<X,Y>\implies A$ by $f(X)=x$, $f(Y)=y$, and define $f$ to be an algebra homomorphism. Things to do: Show $(X^2+1)X$ etc. are in the kernel, which I have done.

Show $f$ is surjective, which I haven't been able to do. Finally I would need to show those elements are in fact the whole kernel in order to invoke the first isomorphism theorem
 
Last edited:
Physics news on Phys.org
I'm a bit confused...is the domain of $f$: $\Bbb R[X,Y]$, or does $R$ refer to some other ring?

Also, you state that $c \in \Bbb R$, but what about $a,b$?

If indeed all the entries of elements of $A$ are to be real, then $x$, as you have defined it, is not in $A$, so your proposed homomorphism does not have the right co-domain.

What does the original problem actually state? I feel we are missing something, here.
 
a,b can be complex numbers and yes R is the set of reals. A is a set by the way, not a matrix
 
Ok, so $A$ is the set of all upper triangular matrices in $\Bbb C_{2 \times 2}$ with real entries in the 2,2 position.

Also, just to clarify, by $\Bbb R\langle X,Y\rangle$ you mean the non-commutative real polynomial ring in two indeterminates, right?

Also, you are taking:

$f(c) = \begin{bmatrix}c&0\\0&c\end{bmatrix}$, yes?

If that is so, then writing:

$a = a_0 + a_1i$
$b = b_0 + b_1i$

we have, for:

$M = \begin{bmatrix}a&b\\0&c\end{bmatrix} \in A$:

$f(c + a_1X + (c - a_0)X^2 + b_0Y + b_1XY) = M$,

which shows $f$ is surjective.

Frankly, I think that's all you need to show, because $R\langle X,Y\rangle$ is *free* in $X$ and $Y$, and $f$ evidently annihilates the set of generators of the ideal, so $A$ IS (isomorphic to) the quotient of the free $\Bbb R$-algebra on two letters modulo the ideal generated by the generating set (using the universal properties of free algebras and quotient rings).

I hope that makes sense to you.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K