Is Angular Momentum Conserved in Euler's Equations?

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Constant
Ted123
Messages
428
Reaction score
0

Homework Statement



[PLAIN]http://img836.imageshack.us/img836/5302/euler.jpg

Homework Equations





The Attempt at a Solution



Am I doing this right?

\displaystyle \frac{d}{dt} \left( A{\omega_1}^2+B{\omega_2}^2 + C{\omega_3}^2 )= 2A\dot{\omega}_1 + 2B\dot{\omega}_2 + 2C\dot{\omega}_3 = 2(B-C)\omega_2\omega_3 + 2(C-A)\omega_3\omega_1 + 2(A-B)\omega_1\omega_2

But I can't get this to = 0. Anyone help?
 
Last edited by a moderator:
Physics news on Phys.org
You made a (hard-to-spot) mistake at the derivative:

\frac{d}{dx}(f^2)=2f\frac{d}{dx}{f}

and not

\frac{d}{dx}(f^2)=2\frac{d}{dx}{f}

If you correct this, then your equation will yield zero.
 
micromass said:
You made a (hard-to-spot) mistake at the derivative:

\frac{d}{dx}(f^2)=2f\frac{d}{dx}{f}

and not

\frac{d}{dx}(f^2)=2\frac{d}{dx}{f}

If you correct this, then your equation will yield zero.

So is this correct?:

\frac{d}{dt} (A{\omega_1}^2 + B{\omega_2}^2 + C{\omega_3}^2 ) = 2A\omega_1 \dot{\omega}_1 + 2B\omega_2 \dot{\omega}_2 + 2C\omega_3 \dot{\omega}_3

=2\omega_1 (B-C)\omega_2\omega_3 + 2\omega_2 (C-A)\omega_3 \omega_1 + 2\omega_3 (A-B) \omega_1 \omega_2

2B\omega_1 \omega_2 \omega_3 - 2C\omega_1 \omega_2 \omega_3 + 2C\omega_1 \omega_2 \omega_3 - 2A\omega_1 \omega_2 \omega_3 + 2A\omega_1 \omega_2 \omega_3 - 2B\omega_1 \omega_2 \omega_3 = 0 \Rightarrow \text{(i)\;is\;constant}

\frac{d}{dt} (A^2{\omega_1}^2 + B^2{\omega_2}^2 + C^2{\omega_3}^2 ) = 2A^2\omega_1 \dot{\omega}_1 + 2B^2\omega_2 \dot{\omega}_2 + 2C^2\omega_3 \dot{\omega}_3

=2A\omega_1 (B-C)\omega_2\omega_3 + 2B\omega_2 (C-A)\omega_3 \omega_1 + 2C\omega_3 (A-B) \omega_1 \omega_2

2AB\omega_1 \omega_2 \omega_3 - 2AC\omega_1 \omega_2 \omega_3 + 2BC\omega_1 \omega_2 \omega_3 - 2AB\omega_1 \omega_2 \omega_3 + 2AC\omega_1 \omega_2 \omega_3 - 2BC\omega_1 \omega_2 \omega_3 = 0 \Rightarrow \text{(ii)\;is\;constant}
 
This is fine :cool:
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top