fluidistic
Gold Member
- 3,928
- 272
Homework Statement
I'm stuck on a relatively simple exercise which can be found in Callen's book: Show that if ##\alpha = \frac{1}{T}## then ##c_P## is pressure independent.
Homework Equations
What they ask me to show is: If ##\frac{1}{v} \left ( \frac{\partial v }{\partial T} \right ) _P=\frac{1}{T} \Rightarrow \left ( \frac{\partial c_P }{\partial P} \right ) _T=0##.
Where the lower case v is the molar volume and for what will follow the lower case letters are molar quantities.
The Attempt at a Solution
##c_P=T \left ( \frac{\partial s }{\partial T} \right ) _P##. Since both alpha and the specific heat at constant pressure are given in terms of T and P, I will think about v and ##c_p## as functions of T and P.
So ##\left ( \frac{\partial c_P }{\partial P} \right ) _T=T \frac{\partial }{\partial P} \left [\left ( \frac{\partial s }{\partial T} \right ) _P \right ] _T=T \frac{\partial }{\partial T} \left [ \left ( \frac{\partial s }{\partial P} \right ) _T \right ] _P##. Now I use a Maxwell relation, namely that ##\left ( \frac{\partial s }{\partial P} \right ) _T=- \left ( \frac{\partial v }{\partial T} \right ) _P##.
So I get that ##\left ( \frac{\partial c_P }{\partial P} \right ) _T=-T\frac{\partial }{\partial T} \left [ \left ( \frac{\partial v }{\partial T} \right ) _P \right ] _P=-T \frac{\partial }{\partial T} \left [ \left ( \frac{v(T,P)}{T} \right ) \right ] _P##.
So if I can show that ##\frac{\partial }{\partial T} \left [ \left ( \frac{v(T,P)}{T} \right ) \right ] _P=0## then the job would be done. However I'm stuck here, I haven't been able to find a way to show that... Am I going the wrong way? Or simply missing a simple thing?
Edit: Nevermind, problem solved. lol, I was missing a simple thing. I had to perform the partial derivative and I indeed reach that it's worth 0 and hence the proof is completed.
Last edited: