Is Complexifying an Integral the Solution for Tricky Integrands?

  • Thread starter Thread starter HotMintea
  • Start date Start date
  • Tags Tags
    Integral
HotMintea
Messages
42
Reaction score
0
1. The problem statement

1.1. Is it possible to do \int\ sin{x}\, \ cos{x}\, \ e^x\, \ dx\ by complexifying the integral? (Note: not by integration by parts.)

Complexifying the Integral (Arthur Mattuck, MIT) [9:23]


1.2. When is it appropriate to complexify an integral, beside the condition that the integrand can be expressed as Re (\ e^{\alpha x})\, \?

2. The attempt at a solution

2.1.

\begin{equation*} <br /> \begin{split} <br /> \int\ sin{x}\, \ cos{x}\, \ e^{x}\, \ dx\ =\\<br /> \int\ Re(\ e^{i(\frac{\pi}{2}\ -\ x)}\ )\, \ Re(\ e^{ix})\, \ e^{x}\ dx\ =\\<br /> Re\int\ e^{i(\frac{\pi}{2}\ -\ x)}\, \ e^{ix}\, \ e^{x}\ dx\ =\\<br /> Re\int\ i\ e^x\, \ dx\ =\\<br /> - Im( e^x )\ + \ C\, \, (?) <br /> \end{split} <br /> \end{equation*}
 
Last edited by a moderator:
Physics news on Phys.org
Hi HotMintea! :smile:

You've made a mistake in your solution. You seem to think that Re(z)Re(z')=Re(zz'), but this is not the case. The real part doesn't behave that way. Thus you cannot say

Re(e^{i(\pi/2-x)})Re(e^{ix})=Re(e^{i(\pi/2-x)+ix})

Instead, it would be better to use some trigonometric formula's in the beginning:

\sin(x)\cos(x)=\frac{\sin(2x)}{2}
 
Hi micromass! :smile:

Thank you for pointing out my mistake and also for the suggestion.

<br /> \begin{equation*}<br /> \begin{split}<br /> \int\ sin{x}\, \ cos{x}\, \ e^x\ dx\, = \, \frac{1}{2}\int\ sin{2x}\, \ e^x\ dx\, \ = \\ \frac{1}{2}\, \ Re\int\ e^{i(\frac{\pi}{2} - 2x)}\, \ e^x\, \ dx\, = \, \ \frac{1}{2}\ Re(\frac{i}{1-2i}\ e^{(1-2i)x})\, \ + \, \ C\, \ = \\ \frac{1}{10}\ e^x\ Re((i-2)(cos{2x}-isin{2x}))\, +\, \ C\, \ = \, \frac{1}{10}\ e^x\, \ (sin{2x}-2cos{2x})\, \ + \, \ C <br /> \end{split}<br /> \end{equation*}<br />

It now seems to me that complexification works and is effective if an integrand can be rewritten as Re(e^{\alpha x}). Am I correct?
 
HotMintea said:
Hi micromass! :smile:

Thank you for pointing out my mistake and also for the suggestion.

<br /> \begin{equation*}<br /> \begin{split}<br /> \int\ sin{x}\, \ cos{x}\, \ e^x\ dx\, = \, \frac{1}{2}\int\ sin{2x}\, \ e^x\ dx\, \ = \\ \frac{1}{2}\, \ Re\int\ e^{i(\frac{\pi}{2} - 2x)}\, \ e^x\, \ dx\, = \, \ \frac{1}{2}\ Re(\frac{i}{1-2i}\ e^{(1-2i)x})\, \ + \, \ C\, \ = \\ \frac{1}{10}\ e^x\ Re((i-2)(cos{2x}-isin{2x}))\, +\, \ C\, \ = \, \frac{1}{10}\ e^x\, \ (sin{2x}-2cos{2x})\, \ + \, \ C <br /> \end{split}<br /> \end{equation*}<br />
In the very last step, you should write 1/5 instead of 1/10. For the rest you are correct.

It now seems to me that complexification works and is effective if an integrand can be rewritten as Re(e^{\alpha x}). Am I correct?

Yes, that's true! :smile:
 
micromass said:
In the very last step, you should write 1/5 instead of 1/10. For the rest you are correct.

1/10 seems correct: http://www.wolframalpha.com/input/?i=int+cos%28x%29sin%28x%29e^x+dx&asynchronous=false&equal=Submit

Thanks again for your help! :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top