HotMintea
- 42
- 0
1. The problem statement
1.1. Is it possible to do \int\ sin{x}\, \ cos{x}\, \ e^x\, \ dx\ by complexifying the integral? (Note: not by integration by parts.)
Complexifying the Integral (Arthur Mattuck, MIT) [9:23]
1.2. When is it appropriate to complexify an integral, beside the condition that the integrand can be expressed as Re (\ e^{\alpha x})\, \?
2. The attempt at a solution
2.1.
\begin{equation*} <br /> \begin{split} <br /> \int\ sin{x}\, \ cos{x}\, \ e^{x}\, \ dx\ =\\<br /> \int\ Re(\ e^{i(\frac{\pi}{2}\ -\ x)}\ )\, \ Re(\ e^{ix})\, \ e^{x}\ dx\ =\\<br /> Re\int\ e^{i(\frac{\pi}{2}\ -\ x)}\, \ e^{ix}\, \ e^{x}\ dx\ =\\<br /> Re\int\ i\ e^x\, \ dx\ =\\<br /> - Im( e^x )\ + \ C\, \, (?) <br /> \end{split} <br /> \end{equation*}
1.1. Is it possible to do \int\ sin{x}\, \ cos{x}\, \ e^x\, \ dx\ by complexifying the integral? (Note: not by integration by parts.)
Complexifying the Integral (Arthur Mattuck, MIT) [9:23]
1.2. When is it appropriate to complexify an integral, beside the condition that the integrand can be expressed as Re (\ e^{\alpha x})\, \?
2. The attempt at a solution
2.1.
\begin{equation*} <br /> \begin{split} <br /> \int\ sin{x}\, \ cos{x}\, \ e^{x}\, \ dx\ =\\<br /> \int\ Re(\ e^{i(\frac{\pi}{2}\ -\ x)}\ )\, \ Re(\ e^{ix})\, \ e^{x}\ dx\ =\\<br /> Re\int\ e^{i(\frac{\pi}{2}\ -\ x)}\, \ e^{ix}\, \ e^{x}\ dx\ =\\<br /> Re\int\ i\ e^x\, \ dx\ =\\<br /> - Im( e^x )\ + \ C\, \, (?) <br /> \end{split} <br /> \end{equation*}
Last edited by a moderator: