Is diagonalizability necessary for computing the matrix exponential?

AirForceOne
Messages
49
Reaction score
0
Hi,

Suppose I have this matrix A:
83gQG.jpg


Why is the matrix exponential like so:
vH2LQ.jpg

when A is not simple (eigenvalues not distinct)?

Thanks.
 
Physics news on Phys.org
Does not matter. As long as you can diagonalize your matrix for any analytic function f you have (let A = U-1DU with di eigenvalues)


f(A) = U-1 f(D) U

where f(D) is the diagonal matrix with elements f(di).

The proof is not hard you just expand f in a series (due to analyticity) put in U-1 D U and do some algebra.

In your case, the matrix is already diagonal. For any analytic function the formal definition is anyway given in terms of the series expansion and in the case of exponential

exp(A) = 1 + A + A^2/2! + ...

where you can show that this series is convergent etc etc.
 
Sina said:
Does not matter. As long as you can diagonalize your matrix for any analytic function f you have (let A = U-1DU with di eigenvalues)


f(A) = U-1 f(D) U

where f(D) is the diagonal matrix with elements f(di).

The proof is not hard you just expand f in a series (due to analyticity) put in U-1 D U and do some algebra.

In your case, the matrix is already diagonal. For any analytic function the formal definition is anyway given in terms of the series expansion and in the case of exponential

exp(A) = 1 + A + A^2/2! + ...

where you can show that this series is convergent etc etc.

Okay, I understand now. So A must be diagonalizable in order to compute its exponential. For A to be diagonalizable, its eigenvectors must be linearly independent. I calculated A's eigenvalues to be σ (repeated). When I calculated its eigenvectors, I get [anything, anything]. Does this translate to being linearly independent?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top