Is my Integral set up correctly?

  • Thread starter Thread starter viciousp
  • Start date Start date
  • Tags Tags
    Integral Set
viciousp
Messages
49
Reaction score
0

Homework Statement


Use a double integral to find the volume of the solid in
the first octant bounded by the paraboloid z = x^2 + y^2 and the planes
z = 0, x + y = 1.

Homework Equations


The Attempt at a Solution


\int_{0}^{1}{\int_{0}^{1-x}{x^{2}+y^{2}}dy dx}
 
Physics news on Phys.org
Looks ok to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top