Reshma
- 749
- 6
For this given wavefunction of a hydrogen atom in 2s state, verify if the function is normalized:
\psi_{200} = \frac{1}{\sqrt{32\pi a^3}}\left(2 - \frac{r}{a}\right)e^{\frac{-r}{2a}}
My work:
I have to verify:
\int_{all space} \psi_{200}^2 dV = 1
dV = 4\pi r^2dr
So,
\int_{all space} \psi_{200}^2 dV
= \frac{1}{8a^3}\int^{\infty}_{0} \left(2 - \frac{r}{a}\right) ^2 e^{\frac{-r}{2a}} r^2dr
This integral looks like a monster to evaluate . Someone help me out here!
\psi_{200} = \frac{1}{\sqrt{32\pi a^3}}\left(2 - \frac{r}{a}\right)e^{\frac{-r}{2a}}
My work:
I have to verify:
\int_{all space} \psi_{200}^2 dV = 1
dV = 4\pi r^2dr
So,
\int_{all space} \psi_{200}^2 dV
= \frac{1}{8a^3}\int^{\infty}_{0} \left(2 - \frac{r}{a}\right) ^2 e^{\frac{-r}{2a}} r^2dr
This integral looks like a monster to evaluate . Someone help me out here!
Last edited: