Is the Area of y=1/cos^2x Divergent?

  • Thread starter Thread starter yaho8888
  • Start date Start date
yaho8888
Messages
62
Reaction score
0

Homework Statement


Find the area of y= \frac{1}{\cos^2 x} from x=0 to x = \frac{\pi}{2}.

2. The attempt at a solution


\int \frac{1}{\cos^2 x} from 0 to \frac{\pi}{2}.
equals \tan x
and take the limit from the negative side of \frac{\pi}{2}.
since limit of tan at \frac{\pi}{2} is \infty
the funtion is divergent.
so the area dosen't exist.
 
Last edited:
Physics news on Phys.org
I was wondering why no one answer this forum, you only have to check if I am right( yes or no).
 
The integral is divergent.
 
Yes, you are right.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top