Wuberdall
- 32
- 0
Hi PF-members.
My intuition tells me that: Given a divergence free vector field \mathbf{F}, then the curl of the field will be perpendicular to field.
But I'm having a hard time proving this to my self.
I'know that : \nabla\cdot\mathbf{F} = 0 \hspace{3mm} \Rightarrow \hspace{3mm} \exists\mathbf{A}: \mathbf{F} = \nabla\times\mathbf{A}
Therefore : \mathbf{F}\cdot(\nabla\times\mathbf{F}) = 0 \hspace{3mm} \Rightarrow \hspace{3mm} [\nabla\times\mathbf{A}]\cdot[\nabla\times(\nabla\times\mathbf{A})] = 0
But I can't prove that this actually equals zero... Please help!
My intuition tells me that: Given a divergence free vector field \mathbf{F}, then the curl of the field will be perpendicular to field.
But I'm having a hard time proving this to my self.
I'know that : \nabla\cdot\mathbf{F} = 0 \hspace{3mm} \Rightarrow \hspace{3mm} \exists\mathbf{A}: \mathbf{F} = \nabla\times\mathbf{A}
Therefore : \mathbf{F}\cdot(\nabla\times\mathbf{F}) = 0 \hspace{3mm} \Rightarrow \hspace{3mm} [\nabla\times\mathbf{A}]\cdot[\nabla\times(\nabla\times\mathbf{A})] = 0
But I can't prove that this actually equals zero... Please help!