Is the Function f(x)=1/(1-1/x) Defined at x=0?

  • Thread starter Thread starter foxjwill
  • Start date Start date
  • Tags Tags
    Value
foxjwill
Messages
350
Reaction score
0
[SOLVED] value of 1/(1-1/0) at 0

Homework Statement


Is the function
f(x)=\frac{1}{1-\frac{1}{x}}​
defined at x=0?

Homework Equations


The Attempt at a Solution


Since we have division by zero in the denominator, I'm assuming that it isn't. Am I correct?
 
Physics news on Phys.org
I would agree.
 
Yes, 1/0 is NOT defined. You don't have to "assume" anything!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top