DRose87
- 10
- 0
Homework Statement
Given: Ideal gas equations:
Find S(T,V) for an ideal gas
Homework Equations
Ideal gas equations:
\begin{array}{l}<br /> {\rm{}}\\<br /> U = \frac{3}{2}N{k_B}{\left( {\frac{N}{V}} \right)^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]{\rm{ }}\\<br /> T = {\left( {\frac{{\partial U}}{{\partial S}}} \right)_{V,N}} = \frac{U}{{\left( {3/2} \right)N{k_B}}}\\<br /> \\<br /> {\rm{Find: }}\\<br /> {\rm{S = S}}\left( {T,V} \right){\rm{ }}\\<br /> \\\end{array} for an ideal gas
The answer, according to the book (David Goodstein's new book "Thermal Physics: Energy and Entropy")
S = \frac{2}{3}N{k_B}\log T{\left( {\frac{V}{N}} \right)^{2/3}} + {s_0} = S\left( {T,V} \right)
The Attempt at a Solution
I'm not sure if the answer given in the book is correct and I'm missing something, or if it is an error.
\begin{array}{l}<br /> \\<br /> U = \frac{3}{2}N{k_B}{\left( {\frac{N}{V}} \right)^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]{\rm{ }}\\<br /> T = {\left( {\frac{{\partial U}}{{\partial S}}} \right)_{V,N}} = \frac{U}{{\left( {3/2} \right)N{k_B}}} = \frac{{\frac{3}{2}N{k_B}{{\left( {\frac{N}{V}} \right)}^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]}}{{\frac{3}{2}N{k_B}}}\\<br /> = {\left( {\frac{N}{V}} \right)^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]\\<br /> \exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right] = \frac{T}{{{{\left( {\frac{N}{V}} \right)}^{2/3}}}} = T{\left( {\frac{V}{N}} \right)^{2/3}}\\<br /> \frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0} = \log \left[ {T{{\left( {\frac{V}{N}} \right)}^{2/3}}} \right]\\<br /> \frac{S}{{\left( {3/2} \right)N{k_B}}} = \log \left[ {T{{\left( {\frac{V}{N}} \right)}^{2/3}}} \right] + {s_0}\\<br /> S = \frac{3}{2}N{k_B}\log \left[ {T{{\left( {\frac{V}{N}} \right)}^{2/3}}} \right] + \frac{3}{2}N{k_B}{s_0}\\<br /> \\<br /> \\<br /> <br /> \end{array}
Last edited: