Is the Given Solution for S(T,V) of an Ideal Gas Accurate?

DRose87
Messages
10
Reaction score
0

Homework Statement


Given: Ideal gas equations:
Find S(T,V) for an ideal gas

Homework Equations


Ideal gas equations:
\begin{array}{l}<br /> {\rm{}}\\<br /> U = \frac{3}{2}N{k_B}{\left( {\frac{N}{V}} \right)^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]{\rm{ }}\\<br /> T = {\left( {\frac{{\partial U}}{{\partial S}}} \right)_{V,N}} = \frac{U}{{\left( {3/2} \right)N{k_B}}}\\<br /> \\<br /> {\rm{Find: }}\\<br /> {\rm{S = S}}\left( {T,V} \right){\rm{ }}\\<br /> \\\end{array} for an ideal gas

The answer, according to the book (David Goodstein's new book "Thermal Physics: Energy and Entropy")
S = \frac{2}{3}N{k_B}\log T{\left( {\frac{V}{N}} \right)^{2/3}} + {s_0} = S\left( {T,V} \right)

The Attempt at a Solution


I'm not sure if the answer given in the book is correct and I'm missing something, or if it is an error.
\begin{array}{l}<br /> \\<br /> U = \frac{3}{2}N{k_B}{\left( {\frac{N}{V}} \right)^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]{\rm{ }}\\<br /> T = {\left( {\frac{{\partial U}}{{\partial S}}} \right)_{V,N}} = \frac{U}{{\left( {3/2} \right)N{k_B}}} = \frac{{\frac{3}{2}N{k_B}{{\left( {\frac{N}{V}} \right)}^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]}}{{\frac{3}{2}N{k_B}}}\\<br /> = {\left( {\frac{N}{V}} \right)^{2/3}}\exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right]\\<br /> \exp \left[ {\frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0}} \right] = \frac{T}{{{{\left( {\frac{N}{V}} \right)}^{2/3}}}} = T{\left( {\frac{V}{N}} \right)^{2/3}}\\<br /> \frac{S}{{\left( {3/2} \right)N{k_B}}} - {s_0} = \log \left[ {T{{\left( {\frac{V}{N}} \right)}^{2/3}}} \right]\\<br /> \frac{S}{{\left( {3/2} \right)N{k_B}}} = \log \left[ {T{{\left( {\frac{V}{N}} \right)}^{2/3}}} \right] + {s_0}\\<br /> S = \frac{3}{2}N{k_B}\log \left[ {T{{\left( {\frac{V}{N}} \right)}^{2/3}}} \right] + \frac{3}{2}N{k_B}{s_0}\\<br /> \\<br /> \\<br /> <br /> \end{array}
 
Last edited:
Physics news on Phys.org
Book is a typo.

I like David Stroud's treatment https://www.physics.ohio-state.edu/~stroud/p846/idealgas.pdf (more https://www.physics.ohio-state.edu/~stroud/p846/p846notes3.pdf, etc.)
 
  • Like
Likes DRose87
Thanks BvU and robphy for your opinions and the links you both postsed. I agree that it is a typo. It is kind of funny that this is actually the first problem in the book and there is a typo. I hope that the rest of the book isn't plagued by errors... fortunately if that turns out to be the case, my class is using a different book, Classical Statistical Thermodynamics by Ashley Carter.
 
Last edited:
Goodstein has a mail address; I'm sure he'll appreciate if you point out stuff he can improve for the next edition !
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top