Is the Group of Order 765 Abelian?

  • Thread starter Thread starter playa007
  • Start date Start date
  • Tags Tags
    Group
playa007
Messages
25
Reaction score
0

Homework Statement


Show that the group of order 765 is abelian (Hint: let G act by conjugation on a normal Sylow p subgroup)


Homework Equations


Sylow theorems


The Attempt at a Solution


By using Sylow`s third theorem, I have calculated that the number of Sylow-3 subgroups and Sylow 17 subgroups is both 1; so both of them are normal subgroups of G. I just don't really understand how to proceed from here; by G acting on either one of those subgroups; I get a group homomorphism G->S_Q (where Q is either the Sylow 17 subgroup or Sylow 3 subgroup). I believe that eventual goal is to show that G is cyclic.

Some random thoughts in my head: Aut(Q)=C_16 (Q being the 17-Sylow subgroup). Much thanks and any help is appreciated
 
Physics news on Phys.org
First do a counting argument to show that the number of p-Sylow subgroups for all three values of p must be equal to 1. This will show the p-Sylow subgroups exhaust G. Hence their direct product is isomorphic to G. But each p-Sylow subgroup is abelian (because each order is either prime or a square of a prime) and so all of G is abelian. Done diddly done! You're going to UBC aren't you? :)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top