Is the Hamiltonian of a string given by a sum of harmonic oscillators?

spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



This problem is a continuation of the problem I posted in this thread: https://www.physicsforums.com/threads/equation-of-motion-from-a-lagrangian.867784/

(We have set the mass per unit length in that question to ##\sigma## = 1 to simplify some of the formulae a little.)

The string has classical Hamiltonian given by ##H= \sum\limits_{n=1}^{\infty} (\frac{1}{2}p_{n}^{2}+\frac{1}{2}\omega_{n}^{2}q_{n}^{2})## where ##\omega_n## is the frequency of the ##n##th mode.

After quantization, ##q_n## and ##p_n## become operators satisfying ##[q_n , q_m]=[p_n , p_m]=0## and ##[q_n , p_m]=i\delta_{nm}##.

Introduce creation and annihilation operators ##a_n = \sqrt{\frac{\omega_n}{2}}q_{n}+\frac{i}{\sqrt{2\omega_{n}}}p_{n}## and ##a^{\dagger}_{n}=\sqrt{\frac{\omega_n}{2}}q_{n}-\frac{i}{\sqrt{2\omega_{n}}}p_{n}##.

Show that they satisfy the commutation relations ##[a_n , a_m]=[a^{\dagger}_n , a^{\dagger}_m]=0## and ##[a_n , a^{\dagger}_m]=\delta_{nm}##.

Show that the Hamiltonian of the system can be written in the form ##H=\sum\limits_{n=1}^{\infty}\frac{1}{2}\omega_{n}(a_{n}a^{\dagger}_{n}+a^{\dagger}_{n}a_{n})##.

Given the existence of a ground state ##|0\rangle## such that ##a_{n}|0\rangle = 0##, explain how, after removing the vacuum energy, the Hamiltonian can be expressed as ##H=\sum\limits_{n=1}^{\infty}\omega_{n}a^{\dagger}_{n}a_{n}##.

Show further that ##[H, a^{\dagger}_{n}] = \omega_{n} a^{\dagger}_{n}## and hence calculate the energy of the state ##|l_{1},l_{2}, \dots , l_{N}\rangle = (a^{\dagger}_{1})^{l_{1}}(a^{\dagger}_{2})^{l_{2}}\dots (a^{\dagger}_{N})^{l_{N}}|0\rangle##.

Homework Equations



The Attempt at a Solution


[/B]
Let me solve the problem part by part.


(We have set the mass per unit length in that question to ##\sigma## = 1 to simplify some of the formulae a little.)

The string has classical Hamiltonian given by ##H= \sum\limits_{n=1}^{\infty} (\frac{1}{2}p_{n}^{2}+\frac{1}{2}\omega_{n}^{2}q_{n}^{2})## where ##\omega_n## is the frequency of the ##n##th mode.

In the previous problem, ##L = \int_{0}^{a} dx \bigg[ \frac{\sigma}{2} \Big( \frac{\partial y}{\partial t}\Big)^{2} - \frac{T}{2} \Big( \frac{\partial y}{\partial x}\Big)^{2} \bigg]= \sum\limits_{n=1}^{\infty} \bigg[ \frac{\sigma}{2} \dot{q}_{n}^{2} - \frac{T}{2} \big( \frac{n \pi}{a}\big)^{2} q_{n}^{2} \bigg]##

under the Fourier expansion ##y(x,t) = \sqrt{\frac{2}{a}} \sum\limits_{n=1}^{\infty} q_{n}(t)\text{sin} \big(\frac{n\pi x}{a}\big)##,

so that the displacement profile ##y(x,t)## is decomposed into an infinite number of displacement profiles ##y_{n}(x,t)=q_{n}(t)\sqrt{\frac{2}{a}}\text{sin} \big(\frac{n\pi x}{a}\big)## indexed by ##n##.
Now, ##p_{m}=\frac{\partial L}{\partial \dot{q}_{m}}= \frac{\partial}{\partial \dot{q}_{m}}\Big(\sum\limits_{n=1}^{\infty} \bigg[ \frac{\sigma}{2} \dot{q}_{n}^{2} - \frac{T}{2} \big( \frac{n \pi}{a}\big)^{2} q_{n}^{2} \bigg]\Big) = \sum\limits_{n=1}^{\infty} \sigma \dot{q}_{n}\ \delta_{nm} = \sigma \dot{q}_{m}##

so that ##H = \Big(\sum\limits_{n=1}^{\infty}p_{n}\dot{q}_{n}\Big)-L = \sum\limits_{n=1}^{\infty} \bigg[ \frac{1}{\sigma} p_{n}^{2} -\frac{1}{2\sigma} p_{n}^{2} + \frac{T}{2} \big( \frac{n \pi}{a}\big)^{2} q_{n}^{2} \bigg] = \sum\limits_{n=1}^{\infty} \bigg[ \frac{1}{2\sigma} p_{n}^{2} + \frac{T}{2} \big( \frac{n \pi}{a}\big)^{2} q_{n}^{2} \bigg]##

so that, under the assumption that the mass per unit length ##\sigma = 1##,

the string has classical Hamiltonian given by ##H= \sum\limits_{n=1}^{\infty} (\frac{1}{2}p_{n}^{2}+\frac{1}{2}\omega_{n}^{2}q_{n}^{2})## where ##\omega_{n} = \sqrt{\frac{T}{\sigma}} \big( \frac{n \pi}{a} \big)## is the frequency of the ##n##th mode.


Would you please comment on my attempt so far?
 
I think I can solve almost all of the problem by myself, but I just need someone to check my working in case I may made mistakes I can't spot.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top