bomba923
- 759
- 0
*Let f\left( x \right) be a twice-differentiable function for which
\; \mathop {\lim }\limits_{x \to 0^ - } f\left( x \right) = \infty
Then, is it true that
\mathop {\lim }\limits_{x \to 0^ - } f\,{''}\left( x \right) > 0\;?
----------------------------------------------
Or a little differently,
*Let f\left( x \right) be a twice-differentiable function for which
\mathop {\lim }\limits_{x \to 0^ - } f\left( x \right) = \infty \;{\text{and }}\forall x < 0,f\,'\left( x \right) > 0
Then, is it true that
\mathop {\lim }\limits_{x \to 0^ - } f\,{''}\left( x \right) > 0\;?
Just curious|
\; \mathop {\lim }\limits_{x \to 0^ - } f\left( x \right) = \infty
Then, is it true that
\mathop {\lim }\limits_{x \to 0^ - } f\,{''}\left( x \right) > 0\;?
----------------------------------------------
Or a little differently,
*Let f\left( x \right) be a twice-differentiable function for which
\mathop {\lim }\limits_{x \to 0^ - } f\left( x \right) = \infty \;{\text{and }}\forall x < 0,f\,'\left( x \right) > 0
Then, is it true that
\mathop {\lim }\limits_{x \to 0^ - } f\,{''}\left( x \right) > 0\;?
Just curious|

Last edited: