Is the Math Behind Quantum Mechanics Misrepresented?

plmokn2
Messages
31
Reaction score
0
Not really a problem but was reading a review of a book on amazon and came across this:

.) It is mathematically sloppy. Dirac introduces the Bra and Ket notation (for which he is responsible, by the way) without mentioning the dual space, and sometimes even reasons wrongly; i.e., he writes "let us postulate that for each ket, there exists a corresponding bra" - this is not a postulate. This is ALWAYS true for finite dimensional vector spaces, and NEVER true for infinite dimensional vector spaces, and can be proven mathematically. In short, there is little attention given to the mathematics behind QM.

Is the bit in bold right? Isn't <psi| normally infinite dimensions or am I confused?

Thanks
 
Physics news on Phys.org
Bra-ket notation doesn't make sense for an abstract vector space -- you can't transpose a vector unless you've chosen an inner product. Once you've done so, every ket can be transposed to a bra. But in general, some bras cannot be transposed into a ket.

For inner-product spaces, every bra can be transposed if and only if the vector space is finite-dimensional

However, we consider a Hilbert space not as an inner-product space, but as a topological inner-product space -- and so the space of bras consists only of continuous linear functionals. By the Riesz representation theorem, every bra can be transposed into a ket.
 
Last edited:
Actually even the bit about it always possible in a finite dimensional vector space is off -- as stated by Hurkyl, you need an inner product. It is true that we sloppy physicists aren't always so hot on mathematical accuracy -- but let's just say that Dirac's words have been read with scrutiny for a while...
 
Thanks
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top