Chain
- 35
- 3
I've been watching the Stanford lectures on GR by Leonard Susskind and according to him the metric tensor is not constant in polar coordinates. To me this seems wrong as I thought the metric tensor would be given by:
<br /> g^{\mu \nu} = <br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 0\\<br /> \end{pmatrix}<br />
Since g_{\mu \nu}x^{\nu}x^{\mu} is supposed to give the squared length of the vector x^{\mu} and indeed it does:
<br /> g_{\mu \nu}x^{\nu}x^{\mu} = <br /> \begin{pmatrix}<br /> r & \theta \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 0\\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> r\\<br /> \theta\\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> r & \theta \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> r\\<br /> 0\\<br /> \end{pmatrix}<br /> = r^2<br />
I'm not sure if he simply made a mistake in the lecture or if I've misunderstood something. I'd appreciate any feedback :)
<br /> g^{\mu \nu} = <br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 0\\<br /> \end{pmatrix}<br />
Since g_{\mu \nu}x^{\nu}x^{\mu} is supposed to give the squared length of the vector x^{\mu} and indeed it does:
<br /> g_{\mu \nu}x^{\nu}x^{\mu} = <br /> \begin{pmatrix}<br /> r & \theta \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 0\\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> r\\<br /> \theta\\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> r & \theta \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> r\\<br /> 0\\<br /> \end{pmatrix}<br /> = r^2<br />
I'm not sure if he simply made a mistake in the lecture or if I've misunderstood something. I'd appreciate any feedback :)