Is the Reflection Coefficient for a Delta Function Potential Always Close to 1?

Domnu
Messages
176
Reaction score
0
So let's say we have a particle in the delta function potential, V = - \alpha \delta(x). I calculated that the reflection coefficient (scattering state) is

R = \frac{1}{1 + (2 \hbar^2 E/m\alpha^2)}​

Now, clearly, the term 2 \hbar^2 E/m\alpha^2 is very small, as \hbar^2 has an order of magnitude of -68. This value is so small that even for classical ordered values for E, m, and \alpha, the reflection coefficient is very close to 1. Is this correct? It seems a bit strange to me that a spike in the potential where a particle's energy is above the potential causes the particle to reflect BACK almost 100% of the time... it seems as if a tank shell going at more than a mile per second goes over a cliff and reflects back... :bugeye:
 
Physics news on Phys.org
The problem is that the potential changes values on a scale that is much smaller (in this case, infinitely small!) than the quantum wavelength of the particle. Classical physics only emerges when the quantum wavelength is much smaller than any classically relevant length scale.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top