Jhenrique
- 676
- 4
Hello!
The definition of Line Integral can be this:
\int_s\vec{f}\cdot d\vec{r}=\int_s(f_1dx+f_2dy+f_3dz)
And the definition of Surface Integral can be this:
\int\int_S(f_1dydz+f_2dzdx+f_3dxdy)
However, in actually:
\\dx=dy\wedge dz \\dy=dz\wedge dx \\dz=dx\wedge dy
What do the Surface Integral be equal to:
\int\int_S(f_1dy\wedge dz+f_2dz\wedge dx+f_3dx\wedge dy)=\int\int_S(f_1dx+f_2dy+f_3dz)=\int\int_S\vec{f}\cdot d\vec{r}
I know, I know... I know that, generally, the definition to Integral Surface is:
\int\int_S\vec{f}\cdot \hat{n}\;dS
I until like this definition when compared to its respective Line Integral:
\int_s\vec{f}\cdot \hat{t}\;ds
But, is correct to definite the Surface Integral as:
\int\int_S\vec{f}\cdot d\vec{r}
being
d\vec{r}=(dx,dy,dz)
?
The definition of Line Integral can be this:
\int_s\vec{f}\cdot d\vec{r}=\int_s(f_1dx+f_2dy+f_3dz)
And the definition of Surface Integral can be this:
\int\int_S(f_1dydz+f_2dzdx+f_3dxdy)
However, in actually:
\\dx=dy\wedge dz \\dy=dz\wedge dx \\dz=dx\wedge dy
What do the Surface Integral be equal to:
\int\int_S(f_1dy\wedge dz+f_2dz\wedge dx+f_3dx\wedge dy)=\int\int_S(f_1dx+f_2dy+f_3dz)=\int\int_S\vec{f}\cdot d\vec{r}
I know, I know... I know that, generally, the definition to Integral Surface is:
\int\int_S\vec{f}\cdot \hat{n}\;dS
I until like this definition when compared to its respective Line Integral:
\int_s\vec{f}\cdot \hat{t}\;ds
But, is correct to definite the Surface Integral as:
\int\int_S\vec{f}\cdot d\vec{r}
being
d\vec{r}=(dx,dy,dz)
?