merrypark3
- 29
- 0
Homework Statement
Show that
If \phi(x,y,z) is a solution of Laplace's equation, show that
\frac{1}{r}\phi (\frac{x}{r^2} ,\frac{y}{r^2} , \frac{z}{r^2} ) is also a solution
Homework Equations
The Attempt at a Solution
let \psi= \frac{1}{r} \phi (\frac{x}{r^2} ,\frac{y}{r^2} , \frac{z}{r^2} ) is a solution.
Then in the spherical coordinate,
\psi=\frac{1}{r} \phi ( \frac{1}{r} , \theta , \varphi )
So input \psi to the spherical laplace equation.
\frac{1}{r^2}\frac{∂}{∂r} (r^2 \frac{∂\psi}{∂r}) = \frac {2}{r^4} \frac{∂\phi}{∂r} - \frac{1}{r^3} \frac{∂^2 \phi}{∂r^2}
The derivation with other angles, same to the original one, except 1/r times factor.
But the r part for the original one is
\frac{1}{r^2}\frac{∂}{∂r} (r^2 \frac{∂\phi}{∂r}) = \frac {2}{r} \frac{∂\phi}{∂r} + \frac{∂^2 \phi}{∂r^2}
What's wrong with me?