Is there a better method to solve the Box Tipping on Inclined Plane problem?

AI Thread Summary
The Box Tipping on Inclined Plane problem involves determining the conditions under which a rectangular block will tip over rather than slip down an incline. A proposed solution incorrectly identifies the top corner as the point of rotation, neglecting the torque from gravity and suggesting a less effective analysis. A more accurate approach specifies the bottom corner as the pivot point, allowing for a clearer understanding of the forces at play. The critical conditions for tipping are established through inequalities involving the coefficients of friction and the dimensions of the block. This discussion emphasizes the importance of correctly analyzing torque and force components in solving physics problems effectively.
siyujiang81
Messages
2
Reaction score
0
I found the following problem on the 2009 F = ma exam.

24. A uniform rectangular wood block of mass M, with length b and height a, rests on an incline. The incline and the wood block have a coefficient of static friction, μs. The incline is moved upwards from an angle of zero through an angle θ. At some critical angle the block will either tip over or slip down the plane. Determine the relationship between a, b, and μs such that the block will tip over (and not slip) at the critical angle. The box is rectangular, and a ̸= b (a is not equal to b).

After trying the problem myself, I looked at some other solutions online, including one presented by an AoPS user. The link to that document can be found here: https://services.artofproblemsolvin...kYmZlNjIz&rn=MjAwOSBGPW1hIHNvbHV0aW9ucy5wZGY=. However, I am not sure about the concepts used in that solution.

First, that solution specified the top corner of the box as the point of rotation. However, the box not actually rotate about that point; it will rotate about the lowest point on the box. Second, the solution completely neglects the torque caused by the gravitational force. Even if we do specify the top corner of the box as the rotational axis, gravity will still provide a torque. The answer still appears to be correct.

I think (and let me know if I am wrong) that a better method would be to specify the rotational axis at the bottom corner of the box. In this way, at the critical angle, the normal force will not produce any torque, and neither does the frictional force. Only the gravity can provide a torque.

It can be easily seen that at the critical angle, the maximum possible frictional force is μs * mg * cos(θc), which in order to counter gravity (and NOT slip), must be greater than mg * cos(θc). From this, we see that μs > tan(θc).

We can break up the weight into its components. The horizontal component has magnitude mg * sin(θc) and acts at a distance a / 2 from the bottom edge. The vertical component has magnitude mg * cos(θc) and acts at a distance b / 2 from the right (lower vertical) edge. In order for the box to tip, the clockwise torque must be larger than the counterclockwise torque, so the inequality mg * sin(θc) * (a / 2) > mg * cos(θc) * (b / 2) must hold. This simplifies nicely to tan(θc) > b / a.

Combining the two simple inequalities gives us our final answer, μs > b / a. Does this solution seem clear?
 
Physics news on Phys.org
siyujiang81 said:
that solution specified the top corner of the box as the point of rotation. However, the box not actually rotate about that point;
If a rigid object rotates, it will rotate equally about any axis you choose. As long as contributions from all forces are considered correctly, the choice of axis does not matter in statics. (In dynamics it can.)
siyujiang81 said:
the solution completely neglects the torque caused by the gravitational force.
The solver is considering the block as being on the point of tipping. In that arrangement, where is the centre of gravity in relation to the highest and lowest corners? What moment will the gravitational force have about those points?

But I agree it is easier your way.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top