Is there a way to calculate the entropy change for an irreversible process?

Click For Summary
The discussion centers on the relationship between entropy changes in reversible and irreversible processes, particularly through the lens of the Clausius inequality. It clarifies that the entropy change for a reversible process is not necessarily greater than that for an irreversible process, as both can yield the same entropy change for a given state transition. However, in irreversible processes, the entropy change is influenced by additional factors such as the non-uniform temperature within the system. The key takeaway is that while the entropy change is a state function and remains consistent, the implications of how that change occurs differ significantly between reversible and irreversible processes. Understanding these nuances is crucial for accurately applying thermodynamic principles.
goggles31
Messages
33
Reaction score
0
If we consider a system to undergo an irreversible process from state 1 to state 2 and a reversible process from state 2 to state 2, then through Clausius inequality

(1to2∫dQirrev/T) + (2to1∫dQrev/T) ≤ 0
(1to2∫dQirrev/T) + s1 - s2 ≤ 0
s2-s1 ≥ (1to2∫dQirrev/T)
Δs ≥ (1to2∫dQirrev/T)

Does this mean that the entropy change for a reversible process is greater than that of an irreversible process? I'm convinced I am wrong because my notes say otherwise but isn't Δs the entropy change of a reversible process and (1to2∫dQirrev/T) the entropy change of an irreversible process?
 
Science news on Phys.org
goggles31 said:
If we consider a system to undergo an irreversible process from state 1 to state 2 and a reversible process from state 2 to state 2, then through Clausius inequality

(1to2∫dQirrev/T) + (2to1∫dQrev/T) ≤ 0
(1to2∫dQirrev/T) + s1 - s2 ≤ 0
s2-s1 ≥ (1to2∫dQirrev/T)
Δs ≥ (1to2∫dQirrev/T)

Does this mean that the entropy change for a reversible process is greater than that of an irreversible process? I'm convinced I am wrong because my notes say otherwise but isn't Δs the entropy change of a reversible process and (1to2∫dQirrev/T) the entropy change of an irreversible process?

first there is correction in typing it should be from state 2 to state 1.

Usually the most efficient processes possible for converting energy from one form to another, are processes where the net entropy change of the system and the surroundings is zero.
These processes represent limits - the best that can be done.

one can also use entropy change as a measure of how reversible a process is-
thus the inequality given in your first equation should be changed to -greater than zero ;
i think each path has contributed to a positive change or increase in entropy ...one can try for a concrete example,
 
goggles31 said:
Does this mean that the entropy change for a reversible process is greater than that of an irreversible process? I'm convinced I am wrong because my notes say otherwise but isn't Δs the entropy change of a reversible process and (1to2∫dQirrev/T) the entropy change of an irreversible process?

That's not quite right. Let's look at a particularly simple case: Suppose you have compressed air in a one-liter bottle. You let it expand to two liters, keeping the temperature constant. There are two ways to do this, reversibly or irreversibly.

Reversible process: You put the gas into a piston, and put the piston into a bucket of water at constant temperature. You let the piston slowly expand to twice the original volume. This causes (for an ideal gas, anyway) an entropy change of \Delta S = NR log(\frac{V_final}{V_initial}) = NR log(2). So the entropy of the gas inside the piston goes up. But since the piston does work as it expands, that work can be used to decrease the entropy of a second system (it can be used to isothermally compress a second piston of gas, which decreases its entropy). The total change in entropy, in a reversible process, is zero: one system's entropy increases, and another system's entropy decreases.

Irreversible process:
You can just release the one-liter volume of gas into an evacuated two-liter bottle. The gas will rapidly expand to fill the bottle. The entropy change for the gas will be the same as in the first process: \Delta S = NR log(2). That's because entropy is a function of state--it doesn't matter how you get to that state.

So there is no difference in the entropy change for a volume of gas, whether it's done reversibly or irreversibly. The difference is that if you make the change reversibly, then the increase in entropy for one system is balanced by a decrease in entropy for a second system. If you make the change irreversibly, then there is no compensating decrease of entropy in a second system.
 
goggles31 said:
If we consider a system to undergo an irreversible process from state 1 to state 2 and a reversible process from state 2 to state 2, then through Clausius inequality

(1to2∫dQirrev/T) + (2to1∫dQrev/T) ≤ 0
(1to2∫dQirrev/T) + s1 - s2 ≤ 0
s2-s1 ≥ (1to2∫dQirrev/T)
Δs ≥ (1to2∫dQirrev/T)

Does this mean that the entropy change for a reversible process is greater than that of an irreversible process? I'm convinced I am wrong because my notes say otherwise but isn't Δs the entropy change of a reversible process and (1to2∫dQirrev/T) the entropy change of an irreversible process?
1to2∫dQirrev/T does not represent the entropy change for the irreversible path. In an irreversible process, the temperature of the system is not spatially uniform, and varies from location to location within the system. So what is the value of T that is supposed to be used in this integration? It is supposed to be the temperature at the interface between the system and surroundings where the heat transfer is occurring (not the average temperature of the system). So what the Clausius inequality really says is that, for an irreversible process, the change in entropy for the system is greater than the integral of dQB/TB, where dQB represents an increment of heat transferred to the system across its boundary and TB represents the absolute boundary temperature at which this heat transfer is occurring.

Some people (myself included) like to interpret (1to2∫dQirrev/T) as the amount of entropy transferred to the system from the surroundings across the system boundary. This, plus the entropy generated within the system (as a result of irreversibilities) is equal to the change in entropy of the system.
 

Similar threads

  • · Replies 60 ·
3
Replies
60
Views
10K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 57 ·
2
Replies
57
Views
8K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
10
Views
3K
  • · Replies 22 ·
Replies
22
Views
6K
Replies
41
Views
8K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 21 ·
Replies
21
Views
5K