Jhenrique
- 676
- 4
Given that D²f(x) = g(x), one form that eliminate the second derivate is integrating the equation: ∫∫D²f(x)dx² = ∫∫g(x)dx². But, and if I try so:
\\ \sqrt{D^2f(x)}=\sqrt{g(x)} \\ D\sqrt{f(x)}=\sqrt{g(x)} \\ PD\sqrt{f(x)}=P\sqrt{g(x)} \\ \sqrt{f(x)}=P\sqrt{g(x)} \\ f(x)=[P\sqrt{g(x)}]^2 \\ f(x)=[\int \sqrt{g(x)}dx]^2
Is it works?
\\ \sqrt{D^2f(x)}=\sqrt{g(x)} \\ D\sqrt{f(x)}=\sqrt{g(x)} \\ PD\sqrt{f(x)}=P\sqrt{g(x)} \\ \sqrt{f(x)}=P\sqrt{g(x)} \\ f(x)=[P\sqrt{g(x)}]^2 \\ f(x)=[\int \sqrt{g(x)}dx]^2
Is it works?