Is There an Algorithm for Solving the Combinatorial Design Problem?

  • Thread starter Thread starter Constantinos
  • Start date Start date
  • Tags Tags
    Design
Constantinos
Messages
80
Reaction score
1
Hey!

I have a certain problem. Let M ≥ 4 be an even number and consider the set [0,1,...\frac{M}{2}-1]. The problem is to put those numbers two times in each row of an M x (M choose 2) matrix, such that all possible combinations of entries that contain a pair of the same number occur just once.

For example, M = 4 it can be trivially seen that the matrix will be:

[0 0 1 1;
0 1 0 1;
0 1 1 0;
1 0 0 1;
1 0 1 0;
1 1 0 0]

Indeed all possible combinations of entries that contain 0 in a row, occur just once. This is also true for all possible combinations of entries that contain the number 1.

For M = 6 though, things get much more difficult. Is there an algorithm that can produce such matrices for arbitrary M? Does such a matrix even exist? Any papers or other info? Thanks!
 
Last edited:
Physics news on Phys.org
You simply have an ##\frac{M}{2}-##ary representation of numbers with certain values of their norm, defined as sum of the digits.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top