Is this correct please - series

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Series
Natasha1
Messages
494
Reaction score
9
Is this correct please:


(a_n+1 / a_n) = ((n+1)^3 * 4^(n+1) / (3 (n+1)!)) * (3(n!) / (n^3 * 4^n))

is all this equal to

(4 * (n+1)^2 * n!) / n^3
 
Physics news on Phys.org
Almost, I think the n! is too much :smile:
 
I don't think you should end up with a factorial.
 
Hammie said:
I don't think you should end up with a factorial.

So this must be the answer, right?

(4 * (n+1)^2) / n^3
 
Looks good to me!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top