Is this proof for a sequence convergence problem correct?

  • Thread starter Thread starter jgens
  • Start date Start date
  • Tags Tags
    Proof Sequences
jgens
Gold Member
Messages
1,575
Reaction score
50

Homework Statement



\lim_{n\to\infty}a_n=l \rightarrow \lim_{n\to\infty}\frac{a_1+\dots+a_n}{n}=l

Homework Equations



N/A

The Attempt at a Solution



Could someone verify that this proof works? I would really appreciate it.

Proof: Since the sequence \{a_n\} converges to l, for any given \varepsilon>0 it's possible to find a number N>0 such that if n>N, then |a_n-l|<\varepsilon/2. Now, because there are only finitely many numbers |a_1-l|,\dots,|a_N-l|, we can choose the greatest such number. Denote this number by M.

Suppose that n>\max{(N,\frac{2MN}{\varepsilon})}, in which case, it clearly follows that \frac{\varepsilon}{2}>\frac{MN}{n}. Therefore,

\left| \frac{a_1+\dots+a_N}{n}-\frac{Nl}{n}\right|\leq\frac{|a_1-l|}{n}+\dots+\frac{|a_N-l|}{n}\leq\frac{MN}{n}<\frac{\varepsilon}{2}

Moreover, since n>N, we also have that

\left| \frac{a_{N+1}+\dots+a_n}{n}-\frac{(n-N)l}{n}\right|\leq\frac{|a_{N+1}-l|}{n}+\dots+\frac{|a_n-l|}{n}<\frac{(n-N)\varepsilon}{2n}<\frac{\varepsilon}{2}

Combining these two results, we see that

\left| \frac{a_1+\dots+a_n}{n}-l\right|\leq\left| \frac{a_1+\dots+a_N}{n}-\frac{Nl}{n}\right|+\left| \frac{a_{N+1}+\dots+a_n}{n}-\frac{(n-N)l}{n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon

Completing the proof.
 
Physics news on Phys.org


Bump.
 


Looks good to me.
 


Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
8
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
7
Views
1K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
5
Views
1K
Back
Top